Variables Selection Affecting Indonesian Human Development Index Using LASSO
Abstract
Keywords
Full Text:
PDFReferences
P. S. Lestari, S. Martha, and N. N. Debataraja, “Penerapan Metode Regresi Ridge Pada Kasus Angka Kematian Bayi Di Provinsi Jawa Timur,” 2022.
H. A. Khoirunissa, A. R. Wijaya, B. Isnaini, and K. Ferawati, “Analisis Faktor-Faktor Penyebab Inflasi di Indonesia Menggunakan Regresi Ridge, LASSO dan Elastic-Net,” Indones. J. Appl. Stat., vol. 7, no. 2, pp. 121–130, 2024, doi: 10.13057/ijas.v7i2.96921.
F. Rahmawati and R. Y. Suratman, “Performa Regresi Ridge dan Regresi Lasso pada Data dengan Multikolinearitas,” Leibniz J. Mat., vol. 2, no. 2, pp. 1–10, 2022, doi: 10.59632/leibniz.v2i2.176.
A. A. H. Suruddin, E. Erfiani, and I. M. Sumertajaya, “The Continuum Regression Analysis with Preprocessed Variable Selection LASSO and SIR-LASSO,” Inferensi, vol. 8, no. 1, pp. 45–51, 2025, [Online]. Available: https://iptek.its.ac.id/index.php/inferensi/article/view/21658
Badan Pusat Statistik, Indeks Pembangunan Manusia 2023 Volume 18. Badan Pusat Statistik/BPS-Statistics Indonesia, 2024. [Online]. Available: https://web-api.bps.go.id/download.php?f=GOvR/J1dHI5pfCpRUWdm2nNJRWdPQWd5amZZZVdzK3JCcmM3YVBjdk16aGRocnVaN1lCSTYvaitUYXdsYnFUNzViaXROeU5OMDBZcWJZbW1BNEI1ajMvcXhzT0pTblpOWEFwdXJMUWF2Wk9QSWU5R3I3MlozMXlZUVJuZzZJSGxhc1UzclNWUTR0YzNCak1rZWVxM2pLV0dZdkk0T21iSH
M. Arif and M. Faisal, “Penerapan Model Regresi Linear Untuk Estimasi Mobil Bekas Menggunakan Bahasa Python,” EULER, vol. 11, no. 2, pp. 182–191, 2023, doi: 10.37905/euler.v11i2.20698.
A. A. Azahra, “Analisis Prediksi Jumlah Penerimaan Mahasiswa Baru Menggunakan Metode Regresi Linier Sederhana,” Bull. Appl. Ind. Eng. Theory, vol. 3, no. 1, 2022.
M. Sinanta P.W.J, “Prediksi Harga Mobil Menggunakan Linear Regression, Ridge Regression Dan Lasso Regression,” J. Rev. Pendidik. dan Pengajaran, vol. 8, no. 1, pp. 3066–3071, 2025, [Online]. Available: https://journal.universitaspahlawan.ac.id/index.php/nutrihealth
R. Tibshirani, “Regression shrinkage and selection via the lasso: A retrospective,” J. R. Stat. Soc. Ser. B Stat. Methodol., vol. 73, no. 3, 2011, doi: 10.1111/j.1467-9868.2011.00771.x.
I. Sartika, N. N. Debataraja, and N. Imro’ah, “Analisis Regresi Dengan Metode Least Absolute Shrinkage And Selection Operator (Lasso) Dalam Mengatasi Multikolinearitas,” BIMASTER, vol. 9, no. 1, pp. 31–38, 2020, [Online]. Available: https://jurnal.untan.ac.id/index.php/jbmstr/article/view/38029/75676584327
J. H. Lee, Z. Shi, and Z. Gao, “On LASSO for predictive regression,” J. Econom., vol. 229, no. 2, 2022, doi: 10.1016/j.jeconom.2021.02.002.
F. Li, L. Lai, and S. Cui, “On the Adversarial Robustness of LASSO Based Feature Selection,” in Wireless Networks (United Kingdom), 2022. doi: 10.1007/978-3-031-16375-3_3.
O. A. Montesinos López, A. Montesinos López, and J. Crossa, “Overfitting, Model Tuning, and Evaluation of Prediction Performance,” in Multivariate Statistical Machine Learning Methods for Genomic Prediction, 2022. doi: 10.1007/978-3-030-89010-0_4.
C. Hong et al., “LASSO-Based Identification of Risk Factors and Development of a Prediction Model for Sepsis Patients,” Ther. Clin. Risk Manag., vol. 20, 2024, doi: 10.2147/TCRM.S434397.
P. Hu, L. Chen, and Z. Zhou, “Machine Learning in the Differentiation of Soft Tissue Neoplasms: Comparison of Fat-Suppressed T2WI and Apparent Diffusion Coefficient (ADC) Features-Based Models,” J. Digit. Imaging, vol. 34, no. 5, 2021, doi: 10.1007/s10278-021-00513-7.
R. Tibshirani, “Regression Shrinkage and Selection Via the Lasso,” J. R. Stat. Soc. Ser. B Methodol., vol. 58, no. 1, 1996, doi: 10.1111/j.2517-6161.1996.tb02080.x.
L. Zhou, F. Koehler, D. J. Sutherland, and N. Srebro, “Optimistic Rates: A Unifying Theory for Interpolation Learning and Regularization in Linear Regression,” ACM / IMS J. Data Sci., vol. 1, no. 2, 2024, doi: 10.1145/3594234.
S. K. Safi, M. Alsheryani, M. Alrashdi, R. Suleiman, D. Awwad, and Z. N. Abdalla, “Optimizing Linear Regression Models with Lasso and Ridge Regression: A Study on UAE Financial Behavior during COVID-19,” Migr. Lett., vol. 20, no. 6, 2023, doi: 10.59670/ml.v20i6.3468.
I. S. Dar, S. Chand, M. Shabbir, and B. M. G. Kibria, “Condition-index based new ridge regression estimator for linear regression model with multicollinearity,” Kuwait J. Sci., vol. 50, no. 2, 2023, doi: 10.1016/j.kjs.2023.02.013.
A. Tsigler and P. L. Bartlett, “Benign overfitting in ridge regression,” J. Mach. Learn. Res., vol. 24, 2023, [Online]. Available: https://www.jmlr.org/papers/volume24/22-1398/22-1398.pdf
T. O. Hodson, T. M. Over, and S. S. Foks, “Mean Squared Error, Deconstructed,” J. Adv. Model. Earth Syst., vol. 13, no. 12, 2021, doi: 10.1029/2021MS002681.
D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation,” PeerJ Comput. Sci., vol. 7, 2021, doi: 10.7717/PEERJ-CS.623.
DOI: http://dx.doi.org/10.12962%2Fj27213862.v8i2.22891
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats