Pengelompokan Kabupaten/Kota Berdasarkan Indikator Pembangunan Ekonomi dan Potensi Daerah Provinsi Jawa Timur Menggunakan Similarity Weight and Filter Method (SWFM)
Abstract
Keywords
Full Text:
PDFReferences
Arisman, “Kekurangan dan Kelebihan Kebijakan Otonomi Daerah,” 4 Maret 2014. [Online]. Available: https://www.jakarta.kemenkumham.go.id. [Diakses 7 Februari 2018].
L. Arsyad, Ekonomi Pembangunan, Yogyakarta: UPP STIM YKPN, 2010.
Dinas Lingkungan Hidup, “Informasi Kinerja pengelolaan Lingkungan Hidup Daerah Provinsi Jawa Timur Tahun 2016,” Pemerintah Provinsi Jawa Timur, Surabaya, 2017.
BPS, “Pertumbuhan Ekonomi Jawa Timur Triwulan IV-2017,” pp. 1-2, 5 Februari 2018.
R. A. Johnson dan D. W. Wichern, Applied Multivariate Statistical Analysis, United States: Prentice Hall, 2007.
S. Sharma, Applied MultivariateTechniques, New York: John Wiley and Sons, Inc., 1996.
J. F. Hair, W. C. Black, B. J. Babin dan R. E. Anderson, Multivariate Data Analysis, 7th penyunt., New Jersey: Pearson Prentice Hall, 2010.
A. R. Orpin dan V. E. Kostylev, “Towards a Statistically Valid Method of Textural Sea Floor Characterization of Benthic Habitats,” Marine Geology 225, pp. 209-222, 2006.
Z. Huang, “Extensions to the k-Means Algorithm for Clustering Large Data Sets with Categorical Values,” Data Mining and Knowledge Discovery 2, pp. 283-304, 1998.
M. V. J. Reddy dan B. Kavitha, “Clustering The Mixed Numerical and Catagorical Dataaset Using Similarity Weight and Filter Method,” International Journal of Database Theory and Application, vol. 5, no. 1, pp. 121-134, 2012.
Alvionita, Metode Ensembel Rock dan SWFM Untuk Pengelompokan Data Campuran Numerik dan Kategorik Pada Kasus Aksesi Jeruk, Surabaya: ITS, 2017.
S. Sukirno, Makro Ekonomi, Jakarta: Erlangga, 1996.
DOI: http://dx.doi.org/10.12962/j27213862.v1i2.6724
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats