Klasifikasi Kategori Pengaduan Masyarakat Melalui Kanal LAPOR! Menggunakan Artificial Neural Network

Mochamad Ihsan Ananto, Wiwiek Setya Winahju, Kartika Fithriasari

Abstract


LAPOR! merupakan sarana aspirasi dan pengaduan masyarakat terkait kinerja pemerintah berbasis media sosial. Oleh karena laporan pengaduan masyarakat yang masuk tersebut berbentuk teks, maka dapat diselesaikan dengan cara text mining. Sehingga dilakukan analisis klasifikasi teks menggunakan Artificial Neural Network serta SMOTE untuk mengatasi data imbalance dan Chi-Square untuk proses seleksi variabel. Data yang digunakan adalah data historis aduan masyarakat melalui kanal LAPOR! tahun 2015. Melalui proses seleksi variabel, didapatkan sejumlah 428 term atau kata yang memberikan pengaruh terhadap kategori aduan masya-rakat. Ketepatan klasifikasi yang dihasilkan melalui metode Artificial Neural Network dengan feature selection dan 3 nodes hidden layer adalah precision 0,794, sensitivity 0,818 dan F1-Score 0,800. Selain itu didapatkan topik permasalahan yang patut mendapatkan perhatian lebih pada setiap kategori aduan dengan menggunakan word cloud.

Keywords


Artificial Neural Network; LAPOR!; SMOTE; Text Mining; Word Cloud

Full Text:

PDF

References


R. Feldman dan J. Sanger, Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, New York: Cambridge University Press, 2007.

C. Megawati, “Analisis Aspirasi dan Pengaduan di Situs LAPOR! Dengan Menggunakan Text Mining,” 2015.

Z. Reyhana, K. Fithriasari, M. Atok dan N. Iriawan, “Linking Twitter Sentiment Knowledge with Infrastructure Develop-ment,” Malaysian Journal of Industrial and Applied Mathe-matics, vol. 34, pp. 91-102, 2018.

S. M. Weiss, Text Mining: Predictive Methods for Analyzing, New York: Springer, 2010.

G. N. M. Nata dan P. P. Yudiastra, “Preprocessing Text Mining Pada Email Box Berbahasa Indonesia,” dalam Kon-ferensi Nasional Sistem & Informatika, Bali, 2017.

F. Rahman, “Klasifikasi Emosi Untuk Teks Berbahasa Indonesia Pada Pengguna Twitter Mengenai Presiden Joko Widodo,” 2018.

E. Gokgoz dan A. Subasi, “Comparison of Decision Tree Algorithms for EMG Signal Classification Using DWT,” Bio-medical Signal Processing and Control, pp. 138-144, 2015.

P. Meesad, P. Boonrawd dan V. Nuipian, “A Chi-Square-Test for Word Importance Differentiation in Text Classification,” dalam International Conference on Information and Electronics Engineering, Singapore, 2011.

O. S. Bachri, M. H. Kusnadi dan O. D. Nurhayati, “Feature Selection Based On Chi Square In Artificial Neural Network To Predict The Accuracy of Student Study Period,” International Journal of Civil Engineering and Technology, pp. 731-739, 2017.

K. W. P. Chawla, “SMOTE synthetic minority over-sampling technique.,” Journal of artificial intelligence research, 2002.

F. K. Damayanti, “Analisis Twitter Pelanggan Belanja Online Menggunakan Metode Naive Bayes Classifier (NBC) dan Artificial Neural Network (ANN),” 2018.

N. D. Astuti, “Klasifikasi Penyakit Gagal Jantung Kongestif Menggunakan Artificial Neural Network,” 2017.

C. E. Nwankpa, W. Ijomah, A. Gachagan dan S. Marshall, “Activation Functions: Comparison of Trends in Practice and Research for Deep Learning,” 2018.

H. Khaulasari, “Combine Sampling - Least Square Support Vector Machine Untuk Klasifikasi Multi Class Imblaanced Data,” 2016.

M. Sokolova dan G. Lapalme, “A systematic analysis of performance measures for classification tasks,” Information Processing and Management 45 , pp. 427-437, 2009.

Q. Castella dan C. Sutton, “Word Storm: Multiples of Word Clouds for Visual Comparison of Documents,” 2013.

F. Z. Tala, “A Study of Stemming Effects on Information Ret-rieval in Bahasa Indonesia,” Master of Logic Project, Institute for Logic, Language and Computation, Universiteit van, Amsterdam, The Netherlands, 2003.

J. Mahanta, “Introduction to Neural Networks, Advantages and Applications,” 10 July 2017. [Online]. Available: https:// towardsdatascience.com/introduction-to-neural-networks-advantages-and-applications.

A. Zhang, Z. Lipton dan S. A. Mu Li, “Dive into Deep Learning,” 2019.

R. I. Kementrian Koordinator Bidang Pembangunan Manusia dan Kebudayaan, Pedoman Umum Subsidi Beras Pada Mas-yarakat Berpendapatan Rendah, Jakarta, 2016.




DOI: http://dx.doi.org/10.12962/j27213862.v2i2.6821

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats