Topic Discovery pada Dokumen Abstrak Jurnal Penelitian di Science Direct Menggunakan Association Rule
Abstract
Keywords
Full Text:
PDFReferences
L. H. Jose, A. Ankur and Z. Xingquan, Topic discovery and future trend forecasting for texts, Florida: Department of Computer and Electrical Engineering and Computer Science Florida Atlantic University, 2016.
U. Setyawati, 2008. [Online]. Available: https://elib.unikom.ac.id/gdl.php?mod=browse.
Elsevier, 2015. [Online]. Available: http://digilib.undip.ac.id/v2/wpcontent/uploads/2016/. [Accessed 23 January 2019].
D. M. Christopher, P. R. and S. Hinrich, Introduction to Information Retrieval 1st Edition, England: Cambridge University Press, 2008.
Z. Chengqi, Association Rule Mining : Models and Algorithms, 2002.
L. E. T. Kusrini, Algoritma Data Mining, Yogyakarta.: Andi, 2009.
D. Kusumo, M. Bijaksana and D. Darmantoro, "Data Mining Dengan Algoritma Apriori Pada RDBMS Oracle," Jurnal Penelitian, p. 1–5, 2016.
Priyanto and D., Mandiri Belajar Analisis Data Dengan SPSS, Yogyakarta: Mediakom, 2013.
N. Pasquier, Y. Bastide, R. Taoull and L. Lakhal, "Efficient Mining of Association Rules Using Closed Itemset Lattices," Information Systems, 1999.
L. Zhuang and H. Dai, "A Maximal Frequent Itemset Approach for Web Document Clustering," in 4th International Conference on Computer and Information Technology, 2004.
R. Walpole, Intoduction to Statistics, New York: Macmillan Publishing Co. Inc, 1995.
DOI: http://dx.doi.org/10.12962/j27213862.v2i2.6824
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats