Pemodelan Multivariate Adaptive Generalized Poisson Regression Spline pada Kasus Jumlah Kematian Ibu di Provinsi Jawa Timur
Abstract
Keywords
Full Text:
PDFReferences
WHO, "Health Statistics and Information Systems," 15 Januari 2004. [Online]. Available: https://www.who.int/healthinfo/statistics/indmaternalmortality/en/.
O. E. a. D. World Commission, Our Common Future, United Nation: Oxford University Press, 1987.
BPS, "Angka Kematian Ibu (AKI)," 15 Januari 2020. [Online]. Available: https://sirusa.bps.go.id/sirusa/index.php/indikator/80.
T. ASEAN Secretariat, ASEAN Statistical Report on Millennium Development Goals, Jakarta: Eu-ASEAN Compass, 2017.
Dinkes Jatim, Profil Kesehatan Provinsi Jawa Timur Tahun 2018, Surabaya: Dinas Kesehatan Provinsi Jawa Timur, 2018.
BPS, "Sirusa BPS," 15 Januari 2020. [Online]. Available: https://sirusa.bps.go.id/sirusa/index.php/indikator/80.
R. Eubank, Spline Smoothing and Nonparametric Regression, New York: Mecel Deker, 1999.
B. Otok, D. Eta and Sita, "Pendekatan Multivariate Adaptive Regression SPLINES (MARS) pada Pemodelan Penduduk Miskin di Indonesia Tahun 2008-2012," Prosiding Seminar Nasional Matematika, pp. 175-191, 2014.
J. Friedman, "Multivariate Adaptive Regression Spline (with discucssion)," Annual Statistics, pp. hal 191-141, 1991.
L. Nahriyah, Bootstrap Aggregating Multivariate Adaptive Regression Splines (Bagging Mars) untuk Klasifikasi Pasien Hiv/Aids Di Kabupaten Pasuruan, Surabaya: Departemen Statistika ITS, 2017.
S. Hidayati, Penaksiran Parameter dan Statistik Uji Model Multivariate Adaptive Generalized Poisson Regression Spline pada Kasus Jumlah Penderita Ispa pada Bayi Di Surabaya Tahun 2017, Surabaya: Departemen Statistika ITS, 2019.
B. I. K. Wardani, Pemodelan Faktor-Faktor yang Mempengaruhi Jumlah Kematian Ibu di Jawa Timur Tahun 2013 Menggunakan Regresi Binomial Negatif, Surabaya: Jurusan Statistika ITS, 2015.
K. Khotimah, Pemodelan Regresi Panel terhadap Faktor-Faktor yang Mempengaruhi Angka Kematian Ibu di Provinsi Jawa Timur, Surabaya: Jurusan Statistika ITS, 2016.
A. Agresti, Categorical Data Analysis, United States of America: John Wiley and Sons Inc, 2002.
A. Cameron and P. Trivedi, Regression Analysis of Count Data, Cambridge : Cambridge University Press, 1998.
A. Melliana, Y. Setyorini, H. Eko, S. Rosi and Purhadi, "The Comparison Of Generalized Poisson Regression And Negative Binomial Reression Methods In Overcoming Overdispersion," Internationsl Journal Of Scientific & Technology Research Volume 2 Issue 8, pp. 255-258, 2013.
A. Famoye, J. Wulu and K. Sigh, "On the Generalized Poisson Regression Model with an Application to Accident Data," Journal of Data Science, Vol. 2, No. 2, pp. hal 287-295, 2004.
D. Karlis and E. Xekalaki, "The Statistican Vol. 49 No 3," A Simulation Comparison of Several Produces for Testing the Poisson Assumption, pp. hal. 355-382, 2000.
N. H. Draper and H. Smith, Applied Regression Analysis, Canada: John Wiley & Sons, 1998.
R. V. Hogg, J. W. McKean and A. T. Craig, Introduction to Mathematical Statistics 8 th ed, Michigan: Pearson Eucation, Inc, 2019.
D. N. Gujarati, Basic Econometrics (Fourth ed), Gary Burke, 2003.
B. Otok, S. Hidayati and Purhadi, "Multivariate Adaptive Generalized Poisson Regression Spline (MAGPRS) on the number of acute respiratory infection infants," Journal of Physics: Conference Series 1397, pp. hal 1-7, 2019.
DOI: http://dx.doi.org/10.12962/j27213862.v4i1.7747
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats