Pengaruh Aplikasi Fibre Reinforced Polymer (FRP) terhadap Perkuatan Kolom Concrete Filled Steel Tube (CFT) menggunakan Metode Elemen Hingga

Ida Ayu Putu Eka Chandra Saraswati, Budi Suswanto, Basshofi Habieb

Abstract


Kolom tabung baja terisi beton (CFT) banyak diaplikasikan pada sistem struktur bentang panjang karena beberapa keunggulannya seperti kekuatan, daktilitas, dan kekakuan yang lebih tinggi dari kolom baja konvensional. Namun, akibat pembebanan berulang, tekuk lokal terbentuk sehingga mengurangi efisiensi pengekangan beton inti oleh tabung baja. Penelitian ini membahas perkuatan kolom CFT dengan pemasangan 3 lapis FRP tipe karbon (CFRP) pada daerah yang berpotensi terjadi sendi plastis. Kolom dimodelkan terhadap beban lateral siklik menggunakan program ABAQUS. Parameter analisis berupa tebal baja kolom CFT dan lapisan CFRP. Hasil analisa menunjukkan CFRP signifikan meningkatkan kapasitas tahanan, menambah initial stiffness, disipasi energi, mengurangi tingkat kehancuran beton inti dan menghambat tekuk tabung baja pada kolom CFT. Perilaku material CFRP yang getas masih mampu bekerja dengan baik pada kolom CFT dengan menunjukkan tren degradasi kekakuan yang tidak tajam. Namun, ketika diaplikasikan pada kolom CFT dengan tebal baja lebih dari 3 mm, kapasitas tahanan dan kekakuan kolom CFT yang dilapisi CFRP menjadi berkurang.

Keywords


Kolom CFT-CFRP; Kapasitas Tahanan; ABAQUS, Tekuk Lokal

Full Text:

PDF

References


M. Ansari, M. Z. Jeddi, W. H. W. Badaruzzaman, M. M. Tahir, S. A. Osman, and E. Hosseinpour, “A numerical investigation on the through rib stiffener beam to concrete-filled steel tube column connections subjected to cyclic loading,” Engineering Science and Technology, an International Journal, vol. 24, no. 3, pp. 728–735, Jun. 2021, doi: 10.1016/j.jestch.2020.10.004.

Y. Ouyang and A. K. H. Kwan, “Finite element analysis of square concrete-filled steel tube (CFST) columns under axial compressive load,” Engineering Structures, vol. 156, pp. 443–459, Feb. 2018, doi: 10.1016/j.engstruct.2017.11.055.

J. F. Hajjar, “Concrete-filled steel tube columns under earthquake loads,” Progress in Structural Engineering and Materials, vol. 2, no. 1, Jan. 2000, doi: 10.1002/(SICI)1528-2716(200001/03)2:1<72::AID-PSE9>3.0.CO;2-E.

Z. Zhou, D. Gan, and X. Zhou, “Cyclic-shear behavior of square thin-walled concrete-filled steel tubular columns with diagonal ribs,” Engineering Structures, vol. 259, p. 114177, May 2022, doi: 10.1016/j.engstruct.2022.114177.

Z. Chen, S. Dong, and Y. Du, “Experimental study and numerical analysis on seismic performance of FRP confined high-strength rectangular concrete-filled steel tube columns,” Thin-Walled Structures, vol. 162, May 2021, doi: 10.1016/j.tws.2021.107560.

Y. Xiao, Wenhui He, and K.-K. Choi, “Confined Concrete-Filled Tubular Columns,” Journal of Structural Engineering, pp. 488–497, 2005, doi: 10.1061/ASCE0733-94452005131:3488.

K. Sakino, H. Nakahara, S. Morino, and I. Nishiyama, “Behavior of Centrally Loaded Concrete-Filled Steel-Tube Short Columns,” Journal of Structural Engineering, vol. 130, no. 2, Feb. 2004, doi: 10.1061/(ASCE)0733-9445(2004)130:2(180).

X. Y. Mao and Y. Xiao, “Seismic behavior of confined square CFT columns,” Engineering Structures, vol. 28, no. 10, pp. 1378–1386, Aug. 2006, doi: 10.1016/j.engstruct.2006.01.015.

Z. Dong et al., “A review of the research and application progress of new types of concrete-filled FRP tubular members,” Construction and Building Materials, vol. 312, p. 125353, Dec. 2021, doi: 10.1016/j.conbuildmat.2021.125353.

Y. Wei, C. Zhu, K. Miao, K. Zheng, and Y. Tang, “Compressive performance of concrete-filled steel tube columns with in-built seawater and sea sand concrete-filled FRP tubes,” Construction and Building Materials, vol. 317, p. 125933, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125933.

Y. Zhang, Y. Wei, K. Miao, and B. Li, “A novel seawater and sea sand concrete-filled FRP-carbon steel composite tube column: Cyclic axial compression behaviour and modelling,” Engineering Structures, vol. 252, p. 113531, Feb. 2022, doi: 10.1016/j.engstruct.2021.113531.

G. Wang, Y. Wei, K. Miao, K. Zheng, and F. Dong, “Axial compressive behavior of seawater sea-sand coral aggregate concrete-filled circular FRP-steel composite tube columns,” Construction and Building Materials, vol. 315, p. 125737, Jan. 2022, doi: 10.1016/j.conbuildmat.2021.125737.

Y. Zhang, Y. Wei, K. Zhao, M. Ding, and L. Wang, “Analytical model of concrete-filled FRP-steel composite tube columns under cyclic axial compression,” Soil Dynamics and Earthquake Engineering, vol. 139, p. 106414, Dec. 2020, doi: 10.1016/j.soildyn.2020.106414.

J.-J. Zeng, S.-D. Liang, Y. Zhuge, J.-K. Zhou, and J. Liao, “Seismic behavior of FRP-concrete-steel double skin tubular columns with a rib-stiffened Q690 steel tube and high-strength concrete,” Thin-Walled Structures, vol. 175, p. 109127, Jun. 2022, doi: 10.1016/j.tws.2022.109127.

J. K. Zhou, G. Lin, and J. G. Teng, “Compound concrete-filled FRP tubular columns under cyclic axial compression,” Composite Structures, vol. 275, p. 114329, Nov. 2021, doi: 10.1016/j.compstruct.2021.114329.

M. Zakir and F. A. Sofi, “Experimental and nonlinear FE simulation-based compressive behavior of stiffened FRP-concrete-steel double-skin tubular columns with square outer and circular inner tubes,” Engineering Structures, vol. 260, p. 114237, Jun. 2022, doi: 10.1016/j.engstruct.2022.114237.

Han, “Concrete-Filled Steel Tube Structure- Theory and Practice,” Science Press Beijing, 2016.




DOI: http://dx.doi.org/10.12962/j2579-891X.v20i3.13136

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:Web
Analytics

Creative Commons License
Jurnal Aplikasi Teknik Sipil by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Based on work at https://iptek.its.ac.id/index.php/jats