Analisis Kerentanan Banjir Menggunakan Data Citra Satelit dan Machine Learning di Kota Surabaya

Ahmad Saifudin, Mahendra Andiek Maulana, Anak Agung Ngurah Satria Damanegara

Abstract


Banjir merupakan bencana alam yang biasanya terjadi saat hujan. Banjir berdampak pada kerusakan sehingga diperlukannya penilaian kerentanan banjir yang efisien. Citra satelit dapat digunakan untuk membantu mendeteksi banjir dalam skala yang luas. Salah satu tantangan dalam mengolah data citra adalah interpretasi citra. Dengan memanfaatkan kemampuan Machine Learning yang diintegrasikan dengan Sistem Informasi Geografis, interpretasi citra dapat dilakukan dengan cepat. Namun, tantangan dari penggunaan citra satelit adalah kurangnya dataset kejadian banjir dalam skala besar. Pada paper ini, kami menyajikan tiga pendekatan Machine Learning, yaitu Bayes, Rain Forest (RF), dan Support Vector Machine (SVM) yang kemudian dianalisis menggunakan metode Frequency Ratio sehingga didapatkan indeks kerentanan banjir.  Dengan memanfaatkan citra Sentinel-1 yang tersedia, analisis dalam penelitian ini menunjukkan bahwa Kota Surabaya termasuk kerentanan banjir rendah sebesar 61,23 persen dari total luas wilayah.

Keywords


Peta Rawan Banjir; Machine Learning; SIG; Sentinel-1

Full Text:

PDF

References


Bronstert, A., & Bárdossy, A. (2003). Uncertainty of runoff modelling at the hillkelerengan scale due to temporal variations of rainfall intensity. Physics and Chemistry of the Earth, 28(6–7). https://doi.org/10.1016/S1474-7065(03)00039-1

Constantinescu, G., Garcia, M., & Hanes, D. (Ed.). (2016). River Flow 2016. CRC Press. https://doi.org/10.1201/9781315644479

Dang, A. T. N., & Kumar, L. (2017). Application of remote sensing and GIS-based hydrological modelling for flood risk analysis: a case study of District 8, Ho Chi Minh city, Vietnam. Geomatics, Natural Hazards and Risk, 8(2), 1792–1811. https://doi.org/10.1080/19475705.2017.1388853

Desalegn, H., & Mulu, A. (2021). Flood vulnerability assessment using GIS at Fetam watershed, upper Abbay basin, Ethiopia. Heliyon, 7(1), e05865. https://doi.org/10.1016/j.heliyon.2020.e05865

Ekeu-wei, I. T., & Blackburn, G. A. (2018). Applications of Open-Access Remotely Sensed Data for Flood Modelling and Mapping in Developing Regions. Hydrology, 5(3), 39. https://doi.org/10.3390/hydrology5030039

Jayakrishnan, R., Srinivasan, R., Santhi, C., & Arnold, J. G. (2005). Advances in the application of the SWAT model for water resources management. Hydrological Processes, 19(3), 749–762. https://doi.org/10.1002/hyp.5624

Kia, M. B., Pirasteh, S., Pradhan, B., Mahmud, A. R., Sulaiman, W. N. A., & Moradi, A. (2012). An artificial neural network model for flood simulation using GIS: Johor River Basin, Malaysia. Environmental Earth Sciences, 67(1), 251–264. https://doi.org/10.1007/s12665-011-1504-z

Kjeldsen, T. R. (2010). Modelling the impact of urbanization on flood frequency relationships in the UK. Hydrology Research, 41(5), 391–405. https://doi.org/10.2166/nh.2010.056

Lee, M.-J., Kang, J. E., & Jeon, S. (2012). Application of frequency ratio model and validation for predictive flooded area susceptibility mapping using GIS. 2012 IEEE International Geoscience and Remote Sensing Symposium, 895–898.

Liu, Y., & Smedt, F. (2004). WetSpa Extension, A GIS-based Hydrologic Model for Flood Prediction and Watershed Management.

Martinis, S., Kersten, J., & Twele, A. (2015). A fully automated TerraSAR-X based flood service. ISPRS Journal of Photogrammetry and Remote Sensing, 104, 203–212. https://doi.org/10.1016/j.isprsjprs.2014.07.014

Mojaddadi, H., Pradhan, B., Nampak, H., Ahmad, N., & Ghazali, A. H. bin. (2017). Ensemble machine-learning-based geospatial approach for flood risk assessment using multi-sensor remote-sensing data and GIS. Geomatics, Natural Hazards and Risk, 8(2), 1080–1102. https://doi.org/10.1080/19475705.2017.1294113

Ouma, Y. O., & Tateishi, R. (2014). Urban flood vulnerability and risk mapping using integrated multi-parametric AHP and GIS: Methodological overview and case study assessment. Water (Switzerland), 6(6), 1515–1545. https://doi.org/10.3390/w6061515

Pradhan, B., & Youssef, A. M. (2011). A 100-year maximum flood susceptibility mapping using integrated hydrological and hydrodynamic models: Kelantan River Corridor, Malaysia. Journal of Flood Risk Management, 4(3), 189–202. https://doi.org/10.1111/j.1753-318X.2011.01103.x

Shrestha, R. R., & Nestmann, F. (2009). Physically Based and Data-Driven Models and Propagation of Input Uncertainties in River Flood Prediction. Journal of Hydrologic Engineering, 14(12), 1309–1319. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000123

Spachinger, K., Dorner, W., Metzka, R., Serrhini, K., & Fuchs, S. (2008). Flood Risk and Flood hazard maps – Visualisation of hydrological risks. IOP Conference Series: Earth and Environmental Science, 4, 012043. https://doi.org/10.1088/1755-1307/4/1/012043

Stefanidis, S., & Stathis, D. (2013). Assessment of flood hazard based on natural and anthropogenic factors using analytic hierarchy process (AHP). Natural Hazards, 68(2), 569–585. https://doi.org/10.1007/s11069-013-0639-5

Tehrany, M. S., Jones, S., & Shabani, F. (2019). Identifying the essential flood conditioning factors for flood prone area mapping using machine learning techniques. Catena, 175, 174–192. https://doi.org/10.1016/j.catena.2018.12.011

Tehrany, M. S., Lee, M.-J., Pradhan, B., Jebur, M. N., & Lee, S. (2014). Flood susceptibility mapping using integrated bivariate and multivariate statistical models. Environmental Earth Sciences, 72(10), 4001–4015. https://doi.org/10.1007/s12665-014-3289-3




DOI: http://dx.doi.org/10.12962/j2579-891X.v21i3.15910

Refbacks

  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »
  • »


Jumlah Kunjungan:Web
Analytics

Creative Commons License
Jurnal Aplikasi Teknik Sipil by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Based on work at https://iptek.its.ac.id/index.php/jats