Sistem Klasifikasi Dan Deteksi Kendaraan Otomatis Dengan Custom Dataset YOLOv8 (Studi Kasus: Kota Balikpapan)

Muhammad Hadid

Abstract


Currently the counting survey is still being carried out manually using surveyors. The challenges include the need for high concentration, energy-draining tasks, and the requirement for a considerable number of surveyors, which are drawbacks in manual data collection. An approach can be taken by fully replacing it with the utilization of artificial intelligence. Using deep learning, research is conducted to design an automatic vehicle detection system by employing the YOLOv8 algorithm as a real-time based vehicle detection. Then, an analysis is performed to test the model's consistency in detecting six classified vehicle objects passing through one of the CCTV videos in Balikpapan's Transportation Agency (Dishub). Based on the analysis, the system's performance is obtained with the following accuracy rates: highest during the day, 96.92%–100%; lowest at night, 91.43%–100%. F1-Score values: highest at night, 80%–100% then in the morning and during the day, 67%–100%.

Keywords


deep learning; detection; YOLOv8

Full Text:

PDF

References


J. S. W. Hutauruk, T. Matulatan, and N. Hayaty, “Deteksi kendaraan secara real time menggunakan metode YOLO berbasis android,” J. Sustain. J. Has. Penelit. dan Ind. Terap., vol. 9, no. 1, pp. 8–14, 2020.

A. Amwin, “Deteksi Dan Klasifikasi Kendaraan Berbasis Algoritma You Only Look Once (YOLO),” 2021.

M. Ghifari‘Azmi, “Sistem Otomatisasi Penghitungan Kendaraan (Vehicle Counting) Berbasis Convolutional Neural Network.” UIN Sunan Kalijaga Yogyakarta, 2020.

L. Rahmawati and K. Adi, “Rancang bangun penghitung dan pengidentifikasi kendaraan menggunakan Multiple Object Tracking,” Youngster Phys. J., vol. 6, no. 1, pp. 70–75, 2017.

D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object Detection with YOLOv8,” arXiv Prepr. arXiv2305.09972, 2023.

R.-Y. Ju and W. Cai, “Fracture Detection in Pediatric Wrist Trauma X-ray Images Using YOLOv8 Algorithm,” arXiv Prepr. arXiv2304.05071, 2023.

G. Jocher and A. Chaurasia, “Ultralytics YOLOv8,” 2023. https://docs.ultralytics.com/

M. Sarosa and N. Muna, “Implementasi Algoritma You Only Look Once (YOLO) untuk Deteksi Korban Bencana Alam,” J. Teknol. Inf. dan Ilmu Komput., vol. 8, no. 4, pp. 787–792, 2021.

F. M. Talaat and H. ZainEldin, “An improved fire detection approach based on YOLO-v8 for smart cities,” Neural Comput. Appl., vol. 35, no. 28, pp. 20939–20954, Oct. 2023, doi: 10.1007/S00521-023-08809-1/FIGURES/9.

L. Kang, Z. Lu, L. Meng, and Z. Gao, “YOLO-FA: Type-1 fuzzy attention based YOLO detector for vehicle detection,” Expert Syst. Appl., vol. 237, p. 121209, Mar. 2023, doi: 10.1016/J.ESWA.2023.121209.

M. H. Hamzenejadi and H. Mohseni, “Fine-tuned YOLOv5 for real-time vehicle detection in UAV imagery: Architectural improvements and performance boost,” Expert Syst. Appl., vol. 231, p. 120845, Nov. 2023, doi: 10.1016/J.ESWA.2023.120845.

A. Solichin, Z. Rahman, and U. B. Luhur, “Identifikasi Plat Nomor Kendaraan Berbasis Mobile dengan Metode Learning Vector Quantization,” J. TICom, vol. 3, no. 3, 2015.

S. R. Dewi, “Deep Learning Object Detection Pada Video Menggunakan Tensorflow Dan Convolutional Neural Network,” 2018.

M. S. Khatami, “Deteksi Kendaraan Menggunakan Algoritma You Only Look Once (Yolo) V3,” 2022.

F. Jalled and I. Voronkov, “Object detection using image processing,” arXiv Prepr. arXiv1611.07791, 2016.




DOI: http://dx.doi.org/10.12962%2Fj2579-891X.v23i3.19632

Refbacks

  • There are currently no refbacks.


Jumlah Kunjungan:Web
Analytics

Creative Commons License
Jurnal Aplikasi Teknik Sipil by Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License

Based on work at https://iptek.its.ac.id/index.php/jats

POSTOTO787

POSTOTO787

slot88

slot88

slot777

slot gacor

slot dana

slot gacor

slot qris

slot qris

slot thailand

slot thailand

slot88 terpercaya

slot88