Effect of Lanthanum Substitution on the Structure and Conductivity of LNMC Samples as Battery Cathodes

Maya Puspitasari Izaak, Y. E. Gunanto, H. Sitompul, Y. Purwamargapratala

Abstract


Lithium-Nickel-Manganese-Cobalt (LNMC) is one of the most successful types of lithium-ion batteries in the market. This battery is a combination of three main metals, nickel, manganese, and cobalt, with relatively the same composition. Measurements was performed on three LMNC materials combined with La composites to reduce the toxicity level of the Cobalt. The purpose of this research is to synthesize and characterize LMNC materials with certain La combinations, thus it is expected to be able to be used as battery cathode. Characterization of materials was carried out using XRD, SEM, and LCR-meter. In this study, we succeed in synthesizing and characterizing LMNC materials with a size of about 150-750 nm. The LCR-meter characterization found conductivity values of approximately 1.06×10−3, 7.07×1010−4, and 4.05×1010−3 S/cm at 100 Hz, 2.29×1010−3, 2.56×1010−3, and 1.34×1010−2 S/cm at 2.5 MHz, 2.74×1010−3, 3.04×1010−3, and 1.51×1010−2 S/cm at 5 MHz for La dopping with x = 0.01, 0.03, and 0.05, respectively. The La substitution increases the conductivity value and reduces the particle size to nanoscale.

Keywords


LMNC; La dopping; Cathode; battery

Full Text:

PDF

References


Y. Mekonnen, A. Sundararajan, and A.I. Sarwat, ”A Review of Cathode and Anode Materials for Lithium-Ion Batteries”, in SoutheastCon 2016, Norfolk, USA, 2016, pp. 1-6.

J.-P. Hu, H. Sheng, Q. Deng, Q. Ma, J. Liu, X.-W. Wu, J.- J. Liu, and Y.-P. Wu, ”High-Rate Layered Cathode of Lithium Ion Batteries through Regulating Three-Dimensional Agglomerated Structure,” Energies, vol. 13, pp. 1602, 2020.

T. Sieber, J. Ducke , A. Rietig, T. Langner and Jorg Acker, ”Recovery of Li(Ni0.33Mn0.33Co0.33)O2 from Lithium- Ion Battery Cathodes: Aspects of Degradation,” Nanomaterials, vol. 9(2), pp. 246, 2019.

K.I. Hamad and Y. Xing, ”Stabilizing Li-rich NMC Materials by Using Precursor Salts with Acetate and Nitrate Anions for Li-ion Batteries,” Batteries, vol. 5, pp. 69, 2019.

H. Chung, A. Grenier, R. Huang, X. Wang, Z. Lebens-Higgins, J.-M. Doux, S. Sallis, C. Song, P. Ercius, K. Chapman, L.F.J. Piper, H.-M. Cho, M. Zhang, and Y.S. Meng, ”Comprehensive study of a versatile polyol synthesis approach for cathode materials for Liion batteries,” Nano Research, vol. 12, pp. 2238-2249, 2019.

J. Liu, Z. Bao, Y. Cui, E.J. Dufek, J.B. Goodenough, P. Khalifah, Q.Li, B.Y. Liaw, P. Liu, A. Manthiram, Y. S.Meng, V.R. Subramanian, M.F.

Toney, V.V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J.Yang, X.- Q. Yang, and J.-G. Zhang, ”Pathways for practical high-energy long- cycling lithium metal batteries,” Nature Energy, vol. 4, pp. 180-186, 2019.

Y. Miao, P. Hynan, A. von Jouanne, and A. Yokochi, ”Current Li-Ion Battery Technologies in Electric Vehicles and Opportunities for Advancements,” Energies, vol. 12(6), pp. 1074, 2019.

N. Liu, R. A. Senthil, Y. Man, J. Pan, X. Jin, Y. Sun, and X. Liu, ”Determination of Nickel, Cobalt and Manganese in cathode material of Lithium ion Batteries,” Int. J. Electrochem. Sci., vol. 13, pp. 1156811579, 2018.

R. Zhang, B. Xia, B. Li, Y. Lai, W. Zheng, H. Wang, W. Wang, and M. Wang, ”Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion BatteryAn Experimental Investigation,” Energies, vol. 11(9), pp. 2275, 2018.

K. Frohlich, E. Legotin, F. B ¨ arhold, and A. Trifonova, ”New large-scale production route for synthesis of lithium nickel manganese cobalt oxide,” J. Solid State Electrochem, vol. 21, pp. 34033410, 2017.

E.A. Olivetti, G. Ceder, G.G. Gaustad, and X. Fu, ”Perspective Lithium-Ion Battery Supply Chain Considerations: Analysis of Potential Bottlenecks in Critical Metalsm,” Joule, vol. 1(2), pp. 229243, 2017.

D. Steward, A. Mayyas, and M. Mann, ”Economics and Challenges of Li- Ion Battery Recycling from End-of-Life Vehicles,” Procedia Manufacturing, vol. 33, pp. 272279, 2019.

Coffin, David, and J. Horowitz, ”The Supply Chain for Electric Vehicle Batteries,” Journal of International Commerce and Economics, Dec. 2018.

Z. Zhu, D. Yu, Y. Yang, C. Su, Y. Huang, Y. Dong, I. Waluyo, B. Wang, A. Hunt, X. Yao, J. Lee, W. Xue, and J. Li, ”Gradient Li-rich oxide cathode particles immunized against oxygen release by a molten salt treatment,” Nature Energy, vol. 4, pp. 10491058, 2019.

S.-M. Bak, E. Hu, Y. Zhou, X. Yu, S.D. Senanayake, S.J. Cho, K.-B. Kim, K.Y. Chung, X.-Q. Yang, and K.-W. Nam, ”Structural Changes and Thermal Stability of Charged LiNixMnyCo2O2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy,” ACS Applied Materials Interfaces, vol. 6(24), pp. 2259422601, 2014.

S. Luo, Y. Tian, H. Li, K. Shi, Z. Tang, Z. Zhang, ”Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries,” Journal of Rare Earths, vol. 28, pp. 439-442, 2010.

D. Wu, H. Zhang, L. Li, L. Qi, Y. Gao, Y. Yang, Q. Chen, ”Effect of sintering temperature on structure and electrical transport properties of La0.7Ca0.26Na0.04MnO3 ceramics,” Ceramics International, vol. 47, pp. 12716-12724, 2021.

M. Bhat, A. Modi, and N. Gaur, ”The effect of sintering temperature on the magneto-transport properties of Pr0.67Sr0.33xAgxMnO3 (0 ≤ x ≤ 0.1) manganites,” Journal of Materials Science: Materials in Electronics, vol. 26, pp. 6444-6449, 2015.

B. Xu, Q. Chen, X. Li, C. Meng, H. Zhang, . Xu, J. Li, Z. Wang, C. Deng, ”Synthesis of single-phase Ti 3SiC2 from coarse elemental powders and the effects of excess Al,” Ceramics International, vol. 45(1), pp. 948-953, 2019.

V. Moniha, N. Vijaya, T. Jeniffer Rani, M. Premalatha, ”Characterization of Nanocathode Material for Rechargeable Lithium Ion Battery,” International Journal of Engineering Research and Technology, vol. 5(9), 2016.

T.-F. Yi, Y. Xie, Q. Wu, H. Liu, L. Jiang, M. Ye, R. Zhu, ”High rate cycling performance of lanthanum-modified Li4Ti5O12 anode materials for lithium-ion batteries,” Journal of Power Sources, vol. 214, pp. 220226, 2012.

A. Jonderian and E.McCalla, ”The role of metal substitutions in the development of Li batteries,” Part II: Solid electrolytes. Mater. Adv., vol. 2, pp. 2846-2875, 2021.

A. Buck, M. Wegner, C. Neugebauer, S. Palis, E. Tsotsas, ”Bifurcation analysis of process stability of continuous fluidized bed agglomeration with external product classification,” Computer Aided Chemical Engineering, vol. 38, pp.1881-1886, 2016.

S. Luo, Y. Tian, H. Li, K. Shi, Z. Tang, Z, Zhang, ”Influence of lanthanum doping on performance of LiFePO4 cathode materials for lithium-ion batteries,” Journal of Rare Earths, vol. 28, pp. 439-442, 2010.

R. Indhrajothi, I. Prakash, V. Manne, N, Satyanarayana, ”Lanthanum ion (La3+) substituted CoFe2O4 anode material for lithium-ion battery applications,” New J. Chem., vol. 39, 2015.




DOI: http://dx.doi.org/10.12962/j24604682.v18i1.10902

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.