Analisa Kehandalan Ekstraksi Fitur Ordo Kedua terhadap Ordo Pertama untuk Identifikasi Ciri Berbasis Tekstur Warna

Arief Bustomi

Abstract


The feature extraction method is done by first converting RGB images into grayscale images. Based on the grayscale image, two different processing methods are carried out, namely first order feature extraction and second order feature extraction. The extraction features of the first order used 5 characteristic parameters, namely Mean, Variance, Skewness, Kurtosis, and Entropy, while the extraction features of the second order used 6 characteristic parameters, namely Angular Second Moment, Contrast, Correlation, Standard Deviation, Inverse Difference Moment and Homogenity. The 11 characteristic parameters will then be classified using the LVQ artificial neural network method to find the final weight used as the reference weight for characteristics identification based on color texture. In this research, 30 image samples were used (15 image samples in category A and 15 image samples in category B) which were divided into 16 image samples for training and 14 image samples for testing. The results of the research analysis show that the second order feature extraction method is more reliable than the first order feature extraction method.


References


Haralick, Robert M., Shanmugam, K. and Dinstein, I. “Textural Features for

Image Classification”. IEEE Transaction on System, Man and Cybernetics,

vol. 3, pp. 618 - 619. 1973.

Pradeep, N. et al. “Feature Extraction of Mammograms”. International

Journal of Bioinformatics Research, vol. 4. pp. 241 - 244. 2012

Whidhiasih, N., Retno, Guritman, S, dan Supriyo, P.T. “Identifikasi Tahap Kematangan Buah Manggis Berdasarkan Warna Menggunakan Fuzzy Neural Network”. Journal Universitas Islam “45” Bekasi. 2012.

Permadi, Yuda, Murinto. “Aplikasi Pengolahan Citra Untuk Identifikasi Kematangan Mentimun Berdasarkan Tekstur Kulit Buah Menggunakan Metode Ekstraksi Ciri Statistik”. Journal. Universitas Ahmad Dahlan. 2015.

Gonzalez, Rafael, C. dan Woods, R. E. “Digital Image Processing”, Third Edition. Prentice Hall, United States of America. 2002

‘Uyun, Shofwatul, Hartati, S., Agus Harjoko, A. dan Subanar. “Selection Mammogram Texture Descriptors Based on Statistics Properties Backpropagation Structure”. International Journal of Computer Science and Information Security (IJCSIS), vol. 11, no. 5. Yogyakarta. May 2013.

Purwanti, E., Chandra F., Pujiyanto dan Bustomi, M.A. “Desain Sistem Klasifikasi Kelainan Jantung menggunakan Learning Vector Quantization”, Jurnal Fisika dan Aplikasinya (JFA), vol. 9, no. 2. Jun 2013.

Widyaningsih, Maura. “Identifikasi Kematangan Buah Apel Dengan Gray level Co-occurrence Matrix (GLCM)”, Journal STMIK Palangkaraya. 2016.

Rizal, M. “Perbandingan Metode Ekstraksi Ciri Ordo Pertama dan Metode Ekstraksi Ciri Ordo Kedua untuk Mengidentifikasi Kematangan Buah Blewah Berdasarkan Tekstur Warna Kulit”. Skripsi UPN “Veteran” Jawa Timur. 2017.




DOI: http://dx.doi.org/10.12962/j24604682.v15i3.5311

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.