Design of an Optical Rotation Value Measurement Tool Using an Arduino Device

soni prayogi

Abstract


Malus' law asserts that the square of the cosine of the angle formed between two polarizers is directly proportional to the intensity of light after passing through them. In this study, we demonstrate this law using a straightforward configuration. Our method of measuring the polarizer's rotational angle while keeping the other polarizer stationary is innovative. It involves manually attaching a multi-turn potentiometer to one of the polarizers. The Arduino board is connected to the potentiometer and light sensor that is used to detect the intensity of transmitted light, allowing for the measurement of light intensity as a function of rotational angle. Additionally, we think that the configuration as it is now can be helpful in physics laboratory classes. It can also be demonstrated by using it during lectures

Full Text:

PDF

References


K. A. Prior, “SEMICONDUCTOR PHYSICS | Impurities and Defects,” in Encyclopedia of Modern Optics, R. D. Guenther, Ed. Oxford: Elsevier, 2005, pp. 442–450. doi: 10.1016/B0-12-369395-0/00624-2.

S. Dutta Gupta and A. Agarwal, “Artificial Lighting System for Plant Growth and Development: Chronological Advancement, Working Principles, and Comparative Assessment,” in Light Emitting Diodes for Agriculture: Smart Lighting, S. Dutta Gupta, Ed. Singapore: Springer, 2017, pp. 1–25. doi: 10.1007/978-981-10-5807-3_1.

D. Sands, “Physics Education Research and the Foundations of Physics: A Case Study from Thermodynamics and Statistical Mechanics,” in Fundamental Physics and Physics Education Research, B. G. Sidharth, J. C. Murillo, M. Michelini, and C. Perea, Eds. Cham: Springer International Publishing, 2021, pp. 117–126. doi: 10.1007/978-3-030-52923-9_11.

B. Yang, “9 - Dynamics of Particles and Rigid Bodies,” in Stress, Strain, and Structural Dynamics, B. Yang, Ed. Burlington: Academic Press, 2005, pp. 279–350. doi: 10.1016/B978-012787767-9/50010-6.

S. Whitaker, “Coupled Transport in Multiphase Systems: A Theory of Drying,” in Advances in Heat Transfer, vol. 31, J. P. Hartnett, T. F. Irvine, Y. I. Cho, and G. A. Greene, Eds. Elsevier, 1998, pp. 1–104. doi: 10.1016/S0065-2717(08)70240-5.

O. Svelto et al., “Lasers and Coherent Light Sources,” in Springer Handbook of Lasers and Optics, F. Träger, Ed. New York, NY: Springer, 2007, pp. 583–936. doi: 10.1007/978-0-387-30420-5_11.

J. F. Waymouth, “History of Light Sources,” in Handbook of Advanced Lighting Technology, R. Karlicek, C.-C. Sun, G. Zissis, and R. Ma, Eds. Cham: Springer International Publishing, 2017, pp. 3–40. doi: 10.1007/978-3-319-00176-0_1.

A. Pan and X. Zhu, “12 - Optoelectronic properties of semiconductor nanowires,” in Semiconductor Nanowires, J. Arbiol and Q. Xiong, Eds. Woodhead Publishing, 2015, pp. 327–363. doi: 10.1016/B978-1-78242-253-2.00012-8.

C. Burgess, “OPTICAL SPECTROSCOPY | Detection Devices*,” in Encyclopedia of Analytical Science (Second Edition), P. Worsfold, A. Townshend, and C. Poole, Eds. Oxford: Elsevier, 2005, pp. 438–443. doi: 10.1016/B0-12-369397-7/00431-3.

S. Prayogi, “Studi Struktur Elektronik Sel Surya a-Si: H Lapisan Jamak Menggunakan Spektroskopi Elipsometri,” doctoral, Institut Teknologi Sepuluh Nopember, 2022. Accessed: Dec. 16, 2022. [Online]. Available: https://repository.its.ac.id/94763/

D. Zhu and C. J. Humphreys, “Solid-State Lighting Based on Light Emitting Diode Technology,” in Optics in Our Time, M. D. Al-Amri, M. El-Gomati, and M. S. Zubairy, Eds. Cham: Springer International Publishing, 2016, pp. 87–118. doi: 10.1007/978-3-319-31903-2_5.

D. H. Dowell et al., “Cathode R&D for future light sources,” Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, vol. 622, no. 3, pp. 685–697, Oct. 2010, doi: 10.1016/j.nima.2010.03.104.

D. Mateo, J. Luis Cerrillo, S. Durini, and J. Gascon, “Fundamentals and applications of photo-thermal catalysis,” Chemical Society Reviews, vol. 50, no. 3, pp. 2173–2210, 2021, doi: 10.1039/D0CS00357C.

S. Prayogi et al., “Observation of resonant exciton and correlated plasmon yielding correlated plexciton in amorphous silicon with various hydrogen content,” Sci Rep, vol. 12, no. 1, Art. no. 1, Dec. 2022, doi: 10.1038/s41598-022-24713-5.

S. Ghufron and S. Prayogi, “Cooling System in Machine Operation at Gas Engine Power Plant at PT Multidaya Prima Elektrindo,” Journal of Artificial Intelligence and Digital Business (RIGGS), vol. 1, no. 2, Art. no. 2, 2023, doi: 10.31004/riggs.v1i2.21.

L. Phillips, “9 - Solar energy,” in Managing Global Warming, T. M. Letcher, Ed. Academic Press, 2019, pp. 317–332. doi: 10.1016/B978-0-12-814104-5.00009-0.

Z. Zainuddin, M. Syukri, S. Prayogi, and S. Luthfia, “Implementation of Engineering Everywhere in Physics LKPD Based on STEM Approach to Improve Science Process Skills,” Jurnal Pendidikan Sains Indonesia (Indonesian Journal of Science Education), vol. 10, no. 2, Art. no. 2, Apr. 2022, doi: 10.24815/jpsi.v10i2.23130.

A. Hadjadj, G. Djellouli, and O. Jbara, “In situ ellipsometry study of the kinetics of hydrogen plasma interaction with a-Si:H thin films: A particular temperature-dependence,” Appl. Phys. Lett., vol. 97, no. 21, p. 211906, Nov. 2010, doi: 10.1063/1.3517495.

M. L. Brongersma, Y. Cui, and S. Fan, “Light management for photovoltaics using high-index nanostructures,” Nat Mater, vol. 13, no. 5, pp. 451–460, May 2014, doi: 10.1038/nmat3921.

S. Kasap, C. Koughia, J. Singh, H. Ruda, and S. OʼLeary, “Optical Properties of Electronic Materials: Fundamentals and Characterization,” in Springer Handbook of Electronic and Photonic Materials, S. Kasap and P. Capper, Eds. Boston, MA: Springer US, 2007, pp. 47–77. doi: 10.1007/978-0-387-29185-7_3.

S. Prayogi, Y. Cahyono, I. Iqballudin, M. Stchakovsky, and D. Darminto, “The effect of adding an active layer to the structure of a-Si: H solar cells on the efficiency using RF-PECVD,” J Mater Sci: Mater Electron, vol. 32, no. 6, pp. 7609–7618, Mar. 2021, doi: 10.1007/s10854-021-05477-6.

F. Febriani, A. N. A. Rahmah, B. I. A. A. Ashfiya, J. Astono, and W. S. B. Dwandaru, “Simple Investigation on the Optical Properties of Carbon Nanodots Using Lasers and a Lux Meter,” Jurnal Fisika dan Aplikasinya, vol. 18, no. 1, Art. no. 1, Jan. 2022, doi: 10.12962/j24604682.v18i1.11005.

P. A. Putro, N. Yudasari, Y. Irdawati, A. S. Sulaeman, and A. Maddu, “Reducing the Electrical Conductivity of ZnO/Ag Nanofiller for Solid Polymer Electrolytes Prepared by Laser Ablation in Polylactic Acid Solution,” Jurnal Fisika dan Aplikasinya, vol. 17, no. 2, Art. no. 2, Jun. 2021, doi: 10.12962/j24604682.v17i2.8135.

W. Bolton, “Chapter 1 - Programmable Logic Controllers,” in Programmable Logic Controllers (Fifth Edition), W. Bolton, Ed. Boston: Newnes, 2009, pp. 1–19. doi: 10.1016/B978-1-85617-751-1.00001-X.

A. Serhane, M. Raad, R. Raad, and W. Susilo, “Programmable logic controllers based systems (PLC-BS): vulnerabilities and threats,” SN Appl. Sci., vol. 1, no. 8, p. 924, Jul. 2019, doi: 10.1007/s42452-019-0860-2.

H. Hamzah, D. Sartika, and M. N. Agriawan, “Development of Photoelectric Effect Learning Media based on Arduino Uno,” Indonesian Review of Physics, vol. 5, no. 1, Art. no. 1, Jun. 2022, doi: 10.12928/irip.v5i1.5830.

S. Mulyanti, W. Sukmawati, and N. E. H. Tarkin, “Development of items in Acid-Base Identification Experiments Using Natural Materials: Validity Test with Rasch Model Analysis,” Phenomenon: Jurnal Pendidikan MIPA, vol. 12, no. 1, Art. no. 1, Oct. 2022, doi: 10.21580/phen.2022.12.1.10703.

D. Hamdani, S. Prayogi, Y. Cahyono, G. Yudoyono, and D. Darminto, “The influences of the front work function and intrinsic bilayer (i1, i2) on p-i-n based amorphous silicon solar cell’s performances: A numerical study,” Cogent Engineering, vol. 9, no. 1, p. 2110726, Dec. 2022, doi: 10.1080/23311916.2022.2110726.

P. H. Santoso and N. Munawanto, “Approaching electrical circuit understanding with circuit builder virtual laboratory,” Jurnal Ilmiah Pendidikan Fisika Al-Biruni, vol. 9, no. 2, Art. no. 2, Oct. 2020, doi: 10.24042/jipfalbiruni.v9i2.5976.

J. P. Colinge and C. A. Colinge, Eds., “Theory of Electrical Conduction,” in Physics of Semiconductor Devices, Boston, MA: Springer US, 2002, pp. 51–72. doi: 10.1007/0-306-47622-3_2.

J. P. Colinge and C. A. Colinge, Eds., “Energy Band Theory,” in Physics of Semiconductor Devices, Boston, MA: Springer US, 2002, pp. 1–49. doi: 10.1007/0-306-47622-3_1.

U. Ewert et al., “Performance Control and Condition Monitoring,” in Springer Handbook of Materials Measurement Methods, H. Czichos, T. Saito, and L. Smith, Eds. Berlin, Heidelberg: Springer, 2006, pp. 831–912. doi: 10.1007/978-3-540-30300-8_16.




DOI: http://dx.doi.org/10.12962/j24604682.v19i3.15555

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.