Investigasi Pengaruh Jarak Celah Sinapsis dengan menggunakan Metode Monte Carlo

Eklesias Donesi Andresta, Nur Aji Wibowo, Adita Sutresno

Abstract


Neurons in the human brain are interconnected and influence each other. Signal integration in brain is determined by the size and the fast synapses response kinetics. This research aims to study the effect of synaptic cleft distance on signaling through a diffusion process using the Monte Carlo Cell simulation program. This research is important to investigate the diffusion process in the body related to the effect of diffusion on signaling if the cleft, area, and concentration are varied. MCell is a probabilistic simulation which a solution of a problem is given based on the probability calculation process. This study uses modeling 3 spherical compartments representing pre-synapses, post-synapses, and neurons as the outer boundary of synapses and as a cleft between pre-synapses and post-synapses. The simulation results showed that the effect of change in the cleft distance on molecular distribution was 98,86%. The narrower size of the cleft distance causes faster molecular distribution. The broader the receptor area (6;12;18;24) causes the molecules to be distributed to increase ((1661;2173;2249;2264)moles). An increase in the amount of concentration (2000;4000;6000;8000) also makes the diffusion rate faster ((1380;2806.25;4203.75;5565)moles/s). The faster the diffusion rate indicates that the signaling process is getting faster.

Keywords


molecular distribution; signalling; synapses.

Full Text:

PDF

References


Dale Purves et al., Neuroscience : Third Edition. USA : Sinauer Associates. 2004, p. 93-126.

Fretche, D., Pannasch, U., Rouach, N., & Holcman, D., “Synapse Geometry and Receptor

Dynamics Modulate Synaptic Strength”. Plos one, 10(6), 25122. 2011.

A. Sutresno et al., “Diffusion and Interaction between ion Ca2+ and ion Gd3+ in a Model

Synapse: A Monte Carlo Study,” Journal of Physics, 1127, 1-6, 2019.

Gil, A., et al., “Monte Carlo Simulation of 3-D Buffered Ca2+ Diffusion in

Neuroendocrine Neurons”. Biophysical Journal, 78, 13-33, 2000.

S. Trihandaru, A. Widyayanti, S. Rachmawati, dan B. S. Toenlioe, “Pemodelan dan

Pengukuran Difusi Larutan Gula dengan Lintasan Cahaya Laser”, Prosiding Pertemuan

Ilmiah XXVI HFI Jateng & DIY, 2012.

B. Haryanto, “Pengaruh Pemilihan Kondisi Batas, Langkah Ruang, Langkah Waktu, dan

Koefisien Difusi pada Model Difusi”. Jurnal Aplika, 8, 1-7, 2008.

Yahya, “Perbedaan Tingkat Laju Osmosis Antara Umbi Solonum Tuberosum dan Doucus

Carota”. Jurnal Biology Education, 1(4), 2018.

Leonid, P. S., & Dmitri A. Rusakov, “The optimal height of the synaptic cleft”. PNAS,

(104), 1823-1828. 2007.

D. Oktavia, “Solusi Asimtotik pada Persamaan Difusi dengan Waktu Singkat”. Jurnal

Matematika, 8, 43-51, 2018

Hutahean, H. D, “Analisa Simulasi Monte Carlo untuk Memprediksi Tingkat Kehadiran

Mahasiswa dalam Perkuliahan”. Journal Of Informatic Pelita Nusantara, 1(3), 2541-3724. 2018

Rex, A. K., Thomas, M. B., Boris, K., Jenchien, J. C., Scott, B., Terrence, J. S. “Fast

Monte Carlo Simulation Methods for Biological Reaction-Diffusion Systems in Solution and on

Surface”. SIAM J Sci Comput, 30 (6), 3126-3126. 2008.

A. Sutresno et al., “Kajian Mekanisme Difusi pada Sistem Mikrophysiologi Model pada Monte

Carlo Simulator Cell (MCell),” Prosiding SKF,2014.

A. Sutresno et al., “Studi Pengaruh Luasan dan Jumlah Molekul pada Membran terhadap

Distribusi Molekul pada Sinaps Menggunakan Metode Monte Carlo,” Prosiding SNIPS,




DOI: http://dx.doi.org/10.12962/j24604682.v16i3.5095

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.