Kajian Validasi Data Global Satellite Mapping of Precipitation (GSMaP) di Bengkulu
Abstract
The rainfall observation data is hard then we need other option to obtain the data which is easier and more accurate. One of methods to obtain rainfall data is using remote sensing. GSMaP is one among products produces by remote sensing which is able to obtaining rainfall data using satellite. The aim of this study is to validate the rainfall data using GSMaP to the rainfall observation data in Bengkulu for 2012-2015. The method used is processing GSMaP data into monthly data then comparing it with in situ data. In addition, there's processing data with statistical test. Based on the results, the correlation between GSMaP data and observation data is in range of 0,4 to 0,89. It shows that GSMaP data is quite valid to be used to fill incomplete rainfall data in Bengkulu, but it has not been able to intrepret value close to underforecast data.
Keywords
Full Text:
PDFReferences
A. Sudrajad, Bengkulu Sebagai Daerah rawan Bencana, Badan Meteorologi dan Geofisika, Bengkulu, 2007.
J. R. McCollum and R. R. Ferraro, “Next generation of NOAA/NESDIS TMI, SSM/I, and AMSR-E Microwave Land Rainfall Algorithms”, J. Geophys. Res., vol. 108, p. 8382, 20013.
T. Ushio, K. Sasashige, T. Kubota, S. Shige, K. Okamoto, K. Aonashi, T. Inoue, N. Takahashi, T. Iguchi, M. Kachi, R. Oki, T. Morimoto, Z. I. Kawasaki, “A Kalman Filter Approach to the Global Satellite Mapping of Precipitation (GSMaP) from Combined Passive Microwave and Infrared Radiometric Data”, Journal of the Meteorological Society of Japan, vol. 87a, p. 137-151, 2009.
J. C. Willmott and K. Matsuura, “Advantages of the Mean Absolute Error (MAE) Over The Root Mean Square Error (RMSE) in Assesing Average Model Performance”, Departement of Geography, University of Delaware, Newark USA, 2009.
E. E. Elbert, J. E. Janowiak, and C. Kidd, “Comparison of Near-Real-Time Precipitation Estimates From Satellite”, Bulletin of American Meteorological Society, vol. 8, no. 1, p. 47-64, 2007.
K. Okamoto, S. Shige, M. Kachi, T. Kubota, T. Ushio, “The Global Precipitation Map Produced by Spaceborn Microwave Radiometers and It’s Application-Overview of the GSMaP (Global Satellite Mapping of Precipitation) Project”, IEEE, p. 4, 2011.
D. Gunawan, D, “Perbandingan Curah Hujan Bulanan dari Data Pengamatan Permukaan, Satelit TRMM dan Model Permukaan NOAH”, Jurnal Meteorologi dan Geofisika, vol. 9, no.1, 2008.
R. Prasetia, “Prediction of monthly rainfall based on the TRMM Precipitation Rdar Satellite Data Over Region of Indonesia”, Thesis, Universitas Udayana, 2010.
X. Tan, Y. Bin, and R. Liang, “Error Features of The Hourly GSMaP Multi-Satellite Precipitation Estimates Over Nine Major Basins of China”, IWA Publishing, Hydrology Research, 2017.
R. W. Spencer, H. M. Goodman, and R. E. Hood, “Precipitation Retrieval Over Land and Ocean with the SSM/I: Identification and Characteristics of the Scattering Signal”, J. Atmos. Oceanic Technol, vol. 6, p. 254–273, 1989.
T. Kubota, T. Ushio, S. Shige, S. Kida, M. Kachi, K. Okamoto, “Verification of High-Resolution Satellite-Based Rainfall Estimates around Japan Using a Gauge-Calibrated Ground-Radar Dataset”, Journal of the Meteorological Society of Japan, vol. 87a, p. 203-222, 2010.
A. Suryantoro, T. Halimurrahman, dan Harjana, “Variasi Spasiotemporal Curah Hujan Indonesia Berbasis Observasi Satelit TRMM”. Diseminasi Kegiatan Bidang Pemodelan Iklim Tahun 2009, Riset Proses Fisika dan Dinamika Serta Pemodelan Atmosfer, Bandung, 21 April 2009.
H. B. K. Tjasyono, Klimatologi, Penerbit ITB, Bandung, 2004.
E. Aldrian, L. D. M. Gates, and F. H. Widodo, “Seasonal Variability of Indonesian Rainfall in ECHAM4 Simulations and in the Reanalyses: the Role of ENSO”, Theoritical and Applied Climatology, vol. 87, p. 41-59, 2007.
DOI: http://dx.doi.org/10.12962/j24604682.v16i3.4944
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.