Effect of zinc ion substitution on sodium-nickel-manganese materials as cathode materials

Maya Puspitasari Izaak, Yohanes Edi Gunanto, Henni Sitompul, Yustinus Purwamargapratala

Abstract


Sodium is one of the new materials to replace Lithium in battery manufacture. For this reason, further research is needed to explore this new material and its composition that meets the cathode material standards. This research aims to synthesize and characterize the Sodium-Nickel-Manganese material with the Zn2+ combination, which is expected to be used as a battery cathode material. The characterization used is XRD, SEM, and LCR-meter. In this research, we succeeded in synthesizing and characterizing Sodium-Nickel-Manganese material with a particle size of around 250-500 nm. Characterization using an LCR meter obtained conductivity values of 6.77 ×10-6,7.46×10-4 and 5.45×10-2S/cm at 100 Hz, 1.86 ×10-6,8.75×10-4 and 1.16 S/cm at 1.5 KHz, 1.7 ×10-6,9.45×10-4 and 1.51 S/cm at 3 KHz, for Zn2+ substitution with x=0.1, 0.15, and 0.20, respectively.


Keywords


Battery ; Cathode; Nanoparticle ; Na-NM ; Zinc substitutions

Full Text:

PDF

References


CNRS. 2017. “Start-up Aims at Producing Sodium-Ion Batteries”. Accessed from: https://phys.org/news/2017-11-start-up-aims-sodium-ion-batteries.html on 20 April 2022.

. Zhi Li,Yu Zhang,Jianhua Zhang,Yongjie Cao,Jiawei Chen,Prof. Haimei Liu,Prof. Yonggang Wang. "Sodium-Ion Battery with a Wide Operation-Temperature Range from −70 to 100 °C". Angewandte chemie., vol.133, issue 13, e202116930. Mar. 2022. DOI: https://doi.org/10.1002/ange.202116930

. Xiujuan Wei,Xuanpeng Wang,Xin Tan,Qinyou An,Liqiang Mai. "Nanostructured Conversion-Type Negative Electrode Materials for Low-Cost and HighPerformance Sodium-Ion Batteries". Advanced functional Materials, vol. 28, issue 46, 1804458. Nov. 2018. DOI: https://doi.org/10.1002/adfm.201804458.

. Jiantie Xu,Min Wang,Nilantha P. Wickramaratne,Mietek Jaroniec,Shixue Dou,Liming Dai. " High-Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen-Doped Graphene Foams". Advanced Materials, vol. 27, issue 12, pp. 2042-2048. Mar. 2015. DOI: https://doi.org/10.1002/adma.201405370

. Peters JF, Peña Cruz A, Weil M. "Exploring the Economic Potential of Sodium-Ion Batteries". Batteries. 2019; 5(1):10. https://doi.org/10.3390/batteries5010010

. Tealdi C, Ricci M, Ferrara C, Bruni G, Quartarone E, Mustarelli P. "Electrochemical Study of Na2Fe1−xMnxP2O7 (x = 0, 0.25, 0.5, 0.75, 1) as Cathode Material for Rechargeable Na-Ion Batteries". Batteries. 2016; 2(1):1. https://doi.org/10.3390/batteries2010001

. Mukherjee S, Bin Mujib S, Soares D, Singh G. "Electrode Materials for HighPerformance Sodium-Ion Batteries". Materials. 2019; 12(12):1952. https://doi.org/10.3390/ma12121952

. Hua Wang,Pengfei Hu,Jie Yang,Guangming Gong,Lin Guo,Xiaodong Chen. "Renewable-Juglone-Based High-Performance Sodium-Ion Batteries". Advanced Materials. 2015. Vol 27, Issue 24, 2348-2354. DOI: https://doi.org/10.1002/adma.201405904

. Song J., Xiao B., Lin Y., Xu K., dan Li X., 2018, "Interphases in Sodium-Ion Batteries", Adv. Energy Mater., 2018, 1703082, 1-24.

. Nieto N, Noya O, Iturrondobeitia A, Sanchez-Fontecoba P, Pérez-López U, Palomares V, Lopez-Urionabarrenechea A, Rojo T. "On the Road to Sustainable Energy Storage Technologies: Synthesis of Anodes for Na-Ion Batteries from Biowaste". Batteries. 2022; 8(4):28. https://doi.org/10.3390/batteries8040028

. Xin He, Jun Wang, Bao Qiu, Elie Paillard, Chuze Ma, Xia Cao, Haodong Liu, Marian Cristian Stan, Haidong Liu, Tobias Gallash, Y. Shirley Meng, Jie Li. "Durable high-rate capability Na0.44MnO2 cathode material for sodium-ion batteries", Nano Energy, Volume 27,2016, Pages 602-610, DOI: https://doi.org/10.1016/j.nanoen.2016.07.021.

. Jianfeng Qian,Min Zhou,Yuliang Cao,Xinping Ai,Hanxi Yang. "Nanosized Na4Fe(CN)6/C Composite as a Low-Cost and High-Rate Cathode Material for Sodium-Ion Batteries". Advanced Energy Materials. 2012. Vol 2, Issue 4, 410-414, DOI: https://doi.org/10.1002/aenm.201100655

. Tim Risthaus, Dong Zhou, Xia Cao, Xin He, Bao Qiu, Jun Wang, Li Zhang, Zhaoping Liu, Elie Paillard, Gerhard Schumacher, Martin Winter, Jie Li, "A highcapacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity", Journal of Power Sources, Volume 395, 2018, Pages 16-24, DOI: https://doi.org/10.1016/j.jpowsour.2018.05.026.

. Siham Doubaji, Mario Valvo, Ismael Saadoune, Mohammed Dahbi, Kristina Edström, "Synthesis and characterization of a new layered cathode material for sodium ion batteries", Journal of Power Sources, Volume 266, 2014, Pages 275- 281, DOI: https://doi.org/10.1016/j.jpowsour.2014.05.042.

. Hwang, J-Y., Myung, S-T dan Sun, Y-K. 2017. "Sodium-Ion Batteries: Present and Future". Chemical Society Reviews, 46, 3529-3614

. M.P. Izaak, Y.E. Gunanto, H. Sitompul, Y. Purwamargapratala. "Effect of Lanthanum Substitution on the Structure and Conductivity of LNMC Samples as Battery Cathodes". Jurnal Fisika dan Aplikasinya, vol. 18, no. 1, Jan 2022.

. Shilin Su, Xiaoyu Bai, Lei Ming, Zhiming Xiao, Chunhui Wang, Bao Zhang, Liao Cheng, Xing Ou, "Influence of sintering temperature on the electrochemical properties of P2-type Na0.67Mn0.7Ni0.2Mg0.1O2 cathodes for sodium-ion batteries", Journal of Solid State Chemistry, Volume 308, 2022, 122916,

. Yingying Xie, Han Gao, Ross Harder, Linsen Li, Jihyeon Gim, Haiying Che, Hong Wang, Yang Ren, Xiaoyi Zhang, Luxi Li*, Zonghai Chen*, Khalil Amine, and Zi-Feng Ma, "Revealing the Structural Evolution and Phase Transformation of O3-Type NaNi1/3Fe1/3Mn1/3O2 Cathode Material on Sintering and Cycling Processes", CS Appl. Energy Mater. 2020, 3, 7, 6107–6114

. Tianyue Tong, Zeyi Tian, Weiliang Chen, Yaoyao Linghu, Dan Li, Zhen Tian, Yanzhong Wang, Yanjun Chen, Li Guo, "Unveiling Zn substitution and carbon nanotubes enwrapping in Na3V2(PO4)3 with high performance for sodium ion batteries: Experimental and theoretical study", Electrochimica Acta, Volume 411, 2022, 140073, ISSN 0013-4686, https://doi.org/10.1016/j.electacta.2022.140073.

. Qianjiang Mao, Cheng Zhang, Wenyun Yang, Jinbo Yang, Limei Sun, Yongmei Hao, Xiangfeng Liu, "Mitigating the voltage fading and lattice cell variations of O3-NaNi0.2Fe0.35Mn0.45O2 for high performance Na-ion battery cathode by Zn doping", Journal of Alloys and Compounds, Volume 794, 2019, Pages 509-517, ISSN 0925-8388, https://doi.org/10.1016/j.jallcom.2019.04.271.

. Mahesh Chandra, Rishabh Shukla, Rakesh Saroha, A.K. Panwar, Amit Gupta, S. Basu, R.S. Dhaka, "Physical properties and electrochemical performance of Zn-substituted Na0.44Mn1−xZnxO2 nanostructures as cathode in Na-ion batteries", Ceramics International, Volume 44, Issue 17, 2018, Pages 21127-21131, ISSN 0272-8842, https://doi.org/10.1016/j.ceramint.2018.08.152.

. Kang Du, Chen Wang, Lihil Uthpala Subasinghe, Satyanarayana Reddy Gajella, Markas Law, Ashish Rudola, Palani Balaya, "A comprehensive study on the electrolyte, anode and cathode for developing commercial type non-flammable sodium-ion battery", Energy Storage Materials, Volume 29, 2020, Pages 287-299, ISSN 2405-8297, https://doi.org/10.1016/j.ensm.2020.04.021.

. Chi Li, Rui Li, Kaining Liu, Rui Si, Zhizhen Zhang, Yong-Sheng Hu, "NaSICON: A promising solid electrolyte for solid-state sodium batteries", Interdiciplinary Materials, vol. 1, pp. 396-416, Jul 2022.

. Nur Sofina Mohamad Johari, Antranik Jonderian, Shipeng Jia, Victor Cozea, Elissa Yao, Syed Bahari Ramadzan Syed Adnan, Noraini Ahmad, Eric McCalla, "High-throughput development of Na2ZnSiO4-based hybrid electrolytes for sodium-ion batteries", Journal of Power Sources, Volume 541, 2022, 231706, ISSN 0378-7753, https://doi.org/10.1016/j.jpowsour.2022.231706.

. Lu-Lu Zhang, Zhao-Yao Chen, Xin-Yuan Fu, Bo Yan, Hua-Chao Tao, Xue-Lin Yang, "Effect of Zn-substitution induced structural regulation on sodium storage performance of Fe-based Prussian blue", Chemical Engineering Journal, Volume 433, Part 3, Apr 2022, 133739, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2021.133739.

. Liu, Y., Liao, J., Tang, Z. et al." Improved Sodium Storage Performance of Zn-Substituted P3-Na0.67Ni0.33Mn0.67O2 Cathode Materials for Sodium-Ion Batteries". J. Electron. Mater. 52, 864–876 (2023). https://doi.org/10.1007/s11664-022-10045-7.




DOI: http://dx.doi.org/10.12962/j24604682.v19i3.16687

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.