Reducing the Electrical Conductivity of ZnO/Ag Nanofiller for Solid Polymer Electrolytes Prepared by Laser Ablation in Polylactic Acid Solution

Permono Adi Putro, Nurfina Yudasari, Yulia Irdawati, Ahmad S. Sulaeman, Akhiruddin Maddu

Abstract


Solid polymer electrolytes (SPEs) are vital components of fast appearing technology for energy storage-conversion devices. Here, SPEs based on silver (Ag) and zinc oxide (ZnO) nanoparticles are prepared by laser ablation in polylactic acid (PLA) at room temperature. The comparison study of PLA, PLA-ZnO, PLA-ZnO/Ag, and PLA-Ag -based SPEs is conducted in pursuance of the electrical conductivity obtained from electrochemical impedance spectroscopy (EIS) characterization. EIS provides comprehensive analyses, including DC
and AC conductivities, dielectric constant, and electrical modulus of the samples. Our results show that PLA-ZnO exhibits an appreciable value of DC conductivity, which insignificantly decreases by Ag existence into PLA-ZnO/Ag. This study suggests that PLA-ZnO remains stable by Ag incorporation; hence, PLA-ZnO/Ag has a great potential as SPEs


Keywords


SPEs; PLA-ZnO/Ag; electrical conductivity

Full Text:

PDF

References


R. Guo et al., ”Electrical and thermal conductivity of polylactic acid (PLA)-based biocomposites by incorporation of nanographite fabricated with fused deposition modeling”, Polymers, vol. 11, pp. 549, 2019.

A. Kim et al., ”Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells”, ACS Nano, vol. 7, pp. 1081-1091, 2013.

R. Kotsilkova et al., ”Exploring thermal annealing and graphene-carbon nanotube additives to enhance crystallinity, thermal, electrical and tensile properties of aged poly(lactic) acid-based filament for 3D printing”, Compos. Sci. Technol., vol. 181, pp. 107712, 2019.

C. Dichtl, P. Sippel, S. Krohns, ”Dielectric properties of 3D printed polylactic acid”, Adv. Mater. Sci. Eng., vol. 10, pp. 659, 2017.

Z. Chu et al., ”Characterization of antimicrobial poly (lactic acid)/nano-composite films with silver and zinc oxide nanoparticles”, Materials, vol. 10, pp. 659, 2017.

K. Shinyama. ”Mechanical and electrical properties of polylactic acid with aliphatic-aromatic polyester”, J. Eng., vol. 2018, pp. 7, 2018.

Q. Zhang et al., ”High stable transparent and conductive ZnO/Ag/ZnO nanofilm electrodes on rigid/flexible substrates”, Energies, vol. 9, pp. 443, 2016.

S. Seong et al., ”Synthesis of Ag-ZnO core-shell nanoparticles with enhanced photocatalytic activity through atomic layer deposition”, Mater. Des., vol. 177, pp. 107831, 2019.

Y. Zhao, S. Li, Y. Zeng, Y. Jiang, ”Synthesis and properties of Ag/ZnO core/shell nanostructures prepared by excimer laser ablation in liquid”, APL Mater., vol. 3, pp. 086103, 2015.

G. Al-Dahash et al., ”Preparation and characterization of ZnO nanoparticles by laser ablation in NaOH aqueous solution”, Iranian Journal of Chemistry and Chemical Engineering., vol. 37, pp. 11-16, 2018.

R. Anugrahwidya et al., ”Optical and structural investigation of synthesis ZnO/Ag nanoparticles prepared by laser ablation in liquid”, Mater. Sci. Semicond. Process., vol. 105, pp. 104712, 2020.

S. B. Aziz, O. G. Abdullah, S. R. Saeed, H. M. Ahmed, ”Electrical and dielectric properties of copper ion conducting solid polymer electrolytes based on chitosan: CBH model for ion transport mechanism”, Int. J. Electrochem. Sci., vol. 13, pp. 3812-3826, 2018.

S. B. Aziz, ”Role of dielectric constant on ion transport: Reformulated arrhenius equation”, Adv. Mater. Sci. Eng., vol. 2016, pp. 11, 2016.

A. Arya, M. Sadiq, A. L. Sharma, ”Salt concentration and temperature dependent dielectric properties of blend solid polymer electrolyte complexed with NaPF6”, Mater. Today Proc., vol. 12, pp. 554-564, 2019.

I. Osada, S. M. Hosseini, S. Jeong, S. Passerini, ”Novel ternary polymer electrolytes based on poly(lactic acid) from sustainable sources”, ChemElectroChem., vol. 4, pp. 463-467, 2017.

S. B. Aziz, Z. H. Z. Abidin, A. K. Arof, ”Influence of silver ion reduction on electrical modulus parameters of solid polymer electrolyte based on chitosan-silver triflate electrolyte membrane”, eXPRESS Polym. Lett., vol. 4, pp. 300-310, 2010.

S. Choudhary and R. J. Sengwa, ”Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes”, J. Appl. Polym. Sci., vol. 132, pp. 41311, 2015.

N. Shukla, A. K. Thakur, A. Shukla, D. T. Marx, ”Ion conduction mechanism in solid polymer electrolyte: An applicability of almond-west formalism”, Int. J. Electrochem. Sci., vol. 9, pp. 7644-7659, 2014.

S. B. Aziz et al., ”Ion transport study in CS: POZ based polymer membrane electrolytes using Trukhan model”, Int. J. Mol. Sci., vol. 20, pp. 5265, 2019.

N. Tripathi, A. Shukla, A. K. Thakur, D. T. Marx, ”Electric modulus and conductivity scaling approach to the analysis of ion transport in solid polymer electrolytes”, Polym. Eng. Sci., vol. 60, pp. 297-305, 2020.

S. B. Aziz et al., ”Increase of metallic silver nanoparticles in chitosan:AgNt based polymer electrolytes incorporated with alumina filler”, Results Phys., vol. 13, pp. 102326, 2019.

C. H. Chan and H. Kammer, ”Impedance spectra of polymer electrolytes”, Ionics, vol. 23, pp. 2327-2337, 2017.

S. B. Aziz et al., ”Employing of Trukhan model to estimate ion transport parameters in PVA based solid polymer electrolyte”, Polymers, vol. 11, pp. 1694, 2019.

Sellam and S. A. Hashmi, ”Enhanced zinc ion transport in gel polymer electrolyte: Effect of nano-sized ZnO dispersion”. J. Solid State Electrochem., vol. 16, pp. 3105-3114, 2012.

V. Alzari et al., ”Study of polymeric nanocomposites prepared by inserting graphene and / or Ag, Au and ZnO nanoparticles in a TEGDA polymer matrix, by means of the use of dielectric

spectroscopy”, AIP Adv., vol. 6, pp. 035005, 2016.

M. F. Shukur et al., ”Conduction mechanism and dielectric properties of solid biopolymer electrolyte incorporated with silver nitrate”, Adv. Mater. Res., vol. 701, pp. 115-119, 2013.

K. Ramly, M. I. N. Isa, A. S. A. Khiar, ”Conductivity and dielectric behaviour studies of starch/PEO+x wt% NH4NO3 polymer electrolyte”, Mater. Res. Innov., vol. 15, pp. s82-s85, 2011.

S. Ramesh, T. F. Yuen, C. J. Shen, ”Conductivity and FTIR studies on PEO-LiX [X: CF3SO3-, SO2 4-] polymer electrolytes”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 69, pp. 670-675, 2008.

S. B. Aziz, R. M. Abdullah, M. F. Z. Kadir, H. M. Ahmed, ”Non suitability of silver ion conducting polymer electrolytes based on chitosan mediated by barium titanate (BaTiO3) for

electrochemical device applications”, Electrochim. Acta., vol. 296, pp. 494-507, 2019.

L. N. Patro and K. Hariharan, ”Frequency dependent conduction characteristics of mechanochemically synthesized NaSn2F5”, Mater. Sci. Eng. B., vol. 162, pp. 173-178, 2009.

S. Ramesh and O. P. Ling, ”Effect of ethylene carbonate on the ionic conduction in poly(vinylidenefluoridehexafluoropropylene) based solid polymer electrolytes”, Polym. Chem., vol. 1, pp. 702-707, 2010.

S. B Aziz, W. O. Karim, H. O. Ghareeb, ”The deficiency of chitosan:AgNO3 polymer electrolyte incorporated with titanium dioxide filler for device fabrication and membrane separation technology”. J. Mater. Res. Technol., vol. 9, pp. 3, 2020.




DOI: http://dx.doi.org/10.12962/j24604682.v17i2.8135

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.