Sensitivity of WRF-HAILCAST Model for Hailstone Detection in Central Lombok on 24 February 2019
Abstract
Hail is one type of extreme weather produced by Cumulonimbus clouds or convective clouds. Due to deep convection involve to physical processes and cloud dynamics, hail may occur in Indonesia. WRF-HAILCAST was used in this study to detect hailstone. The HAILCAST model is applied to WRF-ARW version 4.0 and above in WRF-HAILCAST. The purpose of this study was to determine the sensitivity of the WRF-HAILCAST model with a modified WSM6 microphysics scheme to detect hailstones that possible to reach the surface. The maximum reflectivity value, vertical reflectivity, maximum hailstone diameter, and cloud microphysics were all approximated properly as a result of this study. The estimation of maximum diameter hailstone was 1.6 cm at the time of hail occurred, and the graupel mixing ratio showed 2.2 g/kg which represented small hail could be detected in this model. However, WRF-HAILCAST tends to underestimate and has not been able to estimate the time of hail events according to weather radar properly.
Keywords
Full Text:
PDFReferences
Adams-selin R. D., and Ziegler, C. L., “Forecasting Hail Using a One Dimensional Hail Growth Model within WRF” Mon. Weather Rev., vol. 144, pp. 4919-4939, 2016.
Ahrens, C. D., Meteorology Today an Introduction to Weather, Climate and the Environment, USA: Cengage Learning, 2009.
BMKG, Regulation of the Head of BMKG Number Kep. 009 of 2010 concerning Standard Operating Procedures for Implementation of Early Warning, Reporting, and Dissemination of Extreme Weather Information, Jakarta: BMKG, 2010.
Brimelow, J. C., G. W. Reuter, and E. R. Poolman., “Modeling maximum hail size in Alberta thunderstorms”, Wea. Forecasting, vol. 17, pp. 1048–1062, 2002.
CAWCR., “Introduction of Verification Methods”, URL: https://www.cawcr.gov.au/projects/verification, 2015.
Detik.com., “Hail Lands Central Lombok, Here’s BMKG’s Explanation”. URL: https://news.detik.com/berita/d-4442042/hujan-es-landa-lombok-tengah-begini-penjelasan-bmkg, 2019.
Djakaria, M. S., “Uji Sensitivitas Skema Parameterisasi Mikrofisik dengan Verifikasi Radar Cuaca untuk Simulasi Fenomena Hujan Es (Studi Kasus: Jakarta, 22 November 2018)” Buletin GAW Bariri, vol. 1, no. 2, pp. 94-100, 2020.
Fadholi, A., “Analisa Kondisi Atmosfer pada Kejadian Cuaca Ekstrem Hujan Es (Hail)” SIMETRI: Jurnal Ilmu Fisika Indonesia, vol. 1, no.2D, pp. 74-80, 2012.
Harris, G. N., Bowman, K. P., & Shin, D. B., “Comparison of Freezing-Level Altitudes from the NCEP Reanalysis with TRMM Precipitation Radar Brightband Data” Journal of Climate, vol. 13, no.23, pp. 4137-4148, 2000.
Hong, S. Y., Dudhia, J., & Chen, S. H., “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation” Mon. Weather Rev., 132, 103–120, 2004.
Kain, J. S., S. J. Weiss, J. J. Levit, M. E. Baldwin, and D. R. Bright., “Examination of convection-allowing configurations of the WRF model for the prediction of severe convective weather: The SPC/NSSL Spring Program 2004” Wea. Forecasting, vol. 21, pp. 167–181, 2006.
Liu, Lin., Lin, Chunze., Bai, Yongqing., & He, Dengxin., “Assesing the Effects of Microphysical Scheme on Convective and Stratiform Characteristics in a Mei-Yu Rainfall Combining WRF Simulation and Field Campaign Observation” Hindawi : Advances in Meteorology, 2020.
Martínez-Castro, D., Kumar, S., Flores Rojas, J. L., Moya-Álvarez, A., Valdivia-Prado, J. M., Villalobos-Puma, E., Castillo-Velarde, C. D., and Silva-Vidal, Y., “ The Impact of Microphysics Parameterization in the Simulation of Two Convective Rainfall Events over the Central Andes of Peru Using WRF-ARW” J. Atmosphere, vol. 10, no. 8, pp. 442, 2019.
Min, K. H., Choo, S., Lee, D., and Lee, G., “Evaluation of WRF Cloud Microphysics Schemes Using Radar Observations.” Weather and Forecasting, vol. 30, no. 6, pp. 1571-1589, 2015.
Permata, C.A.D., “Modifikasi Metode Waldvogel Berdasarkan Identifikasi Karakteristik Hujan Es di Wilayah Jawa Bagian Barat.” Thesis, Sekolah Tinggi Meteorologi Klimatologi dan Geofisika, Tangerang, Indonesia, 2018.
Poolman, E. R. “Die voorspelling van haelkorrelgroei in SuidAfrika (The forecasting of hail growth in South Africa).” Thesis, Faculty of Engineering, University of Pretoria, pp. 113, 1992.
Putri, A. R., and Kristianto, A., “Identification of Atmospheric Dynamic Condition During Heavy Rainfall in Banjarnegara Indonesia Using WRF-ARW model: Case 18 June 2016” Journal of Physics: Conferences Series, 1434, IOP Science, 2020.
Rajeevan, M., Kesarkar, A., Thampi, S. B., Rao, T. N., Radhakrishna, B., and Rajasekhar, M. “Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India.” Ann. Geophys., vol. 28, pp. 603–619, 2010.
Sari, F. P., Baskoro, A. P., and Hakim, O. S., “Effect of Different Microphysics Scheme on WRF Model: A Simulation of Hail Event Study Case in Surabaya, Indonesia.” AIP Conference Proceedings 1987, 2018.
SELEX., Software Manual Rainbow 5 Product & Algorithms. Germany: SELEX SIGmbH, 2013.
Skamarock, W.C., et al., A Description of the Advanced Research WRF Version 3. USA : National Center for Atmospheric Research, 2008.
Stanski, H.R., L.J. Wilson, and W.R. Burrows., Survey of Common Verification Methods in Meteorology. World Weather Watch Tech. Rept. No.8, WMO/TD No.358, Geneva: WMO, 1989.
Sudjana., Teknik Analisis Regresi dan Korelasi. Bandung: Tarsito, 1996.
Sugiyono., Statistika untuk Penelitian. Bandung: Alfabeta, 2004.
Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T., Matsui. “High-Resolution NU-WRF Simulations Of A Deep Convective-Precipitation System During MC3E: Further Improvements And Comparisons Between Goddard Microphysics Schemes And Observations”, J. Geophys. Res. Atmos., vol. 121, pp. 1278–1305, 2016.
Tjasyono, Bayong., Mikrofisika Awan dan Hujan, Jakarta: BMKG, 2012.
Wallace. J. M., and Hobbs, P. V. Atmospheric Science: An Introductory Survey, Elsevier, pp. 92, 2006.
Wardoyo, Eko., Radar Meteorologi. Jakarta: BMKG, 2015.
Warner, Thomas T., Numerical Weather and Climate Prediction. Cambridge, UK: Cambridge University Press, 2011.
Weisman, M. L., W. C. Skamarock, and J. B. Klemp. “The resolution dependence of explicitly modeled convective systems.” Mon. Wea. Rev., vol. 125, pp. 527–548, 1997.
Wisnawa G. G., Utami, A. D., Prayudhi, S. A., and Sari, F. P., “Pemanfaatan Model WRF-ARW untuk Simulasi Hujan Sangat Lebat di Bandara I Gusti Ngurah Rai Bali (Studi Kasus Tanggal 12 Januari 2019).” Prosiding Seminar Nasional Fisika dan Pendidikan Fisika 2019, Universitas Yogyakarta, pp. 56-53, 2019.
Yin, L., Ping, F., and Mao, J., “Impact of Cloud Microphysical Processes on the Simulation of A Hailstorm in East China.” Atmospheric Research, vol. 219, pp. 36-56, 2019.
Zhang, S., Liu, S., and Zhang T., “Analysis on the Evolution and Microphysical Characteristics of Two Consecutive Hailstorms in Spring in Yunnan, China.” Atmosphere, vol. 12, no. 1, pp. 63-82, 2021.
DOI: http://dx.doi.org/10.12962/j24604682.v20i1.14010
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.