Engineering of Organic Photodetector For Visible Light Detection By Vacuum Thermal Deposition Method

Chairadeya Chairadeya, Budi Sumanto, Richie Estrada, Sajal Biring, Shun-Wei Liu

Abstract


This study aimed to determine the correlation between the photoactive layer thickness of an organic photodetector device and its performance. This research engineered organic photodetectors using zinc phthalocyanine (ZnPc) and fullerene (C60) as photoactive layers for detecting visible light using the vacuum thermal deposition method. Fabrication of organic photodetectors is done by varying the thickness of the photoactive layer at the same ratio. Of the four engineered organic photodetector variations, an active layer thickness of 90 nm produced the best organic photodetector performance. This photodetector has a dark current density of 1.43 × 10-6 A cm-2, a photocurrent density of 6.19 × 10-4 A cm-2, an external quantum efficiency (EQE) of 73.48% at a wavelength of 630 nm, with a responsivity of 0.39 A W-1 at a bias voltage of -3 V.


Keywords


organic photodetector; vacuum thermal deposition; visible light; OPD

Full Text:

PDF

References


T. Shan, X. Hou, X. Yin, and X. Guo, Organic photodiodes: device engineering and applications, vol. 15, no. 1. Higher Education Press, 2022. doi 10.1007/s12200-022-00049-w.

G. Simone, M. J. Dyson, S. C. J. Meskers, R. A. J. Janssen, and G. H. Gelinck, “Organic Photodetectors and their Application in Large Area and Flexible Image Sensors: The Role of Dark Current,” Adv. Funct. Mater., vol. 30, no. 20, 2020, doi: 10.1002/adfm.201904205.

H. Ren, J. De Chen, Y. Q. Li, and J. X. Tang, “Recent Progress in Organic Photodetectors and their Applications,” Adv. Sci., vol. 8, no. 1, pp. 1–23, 2021, doi: 10.1002/advs.202002418.

S. Ahmad, “Organic semiconductors for device applications: Current trends and future prospects,” J. Polym. Eng., vol. 34, no. 4, pp. 279–338, 2014, doi: 10.1515/polyeng-2013-0267.

Y. Li, H. Chen, and J. Zhang, “Carrier blocking layer materials and application in organic photodetectors,” Nanomaterials, vol. 11, no. 6, 2021, doi: 10.3390/nano11061404.

D. Nath, P. Dey, A. M. Joseph, J. K. Rakshit, and J. N. Roy, “Zero bias high responsive visible organic photodetector based on pentacene and C60,” Opt. Laser Technol., vol. 131, no. April, p. 106393, 2020, doi: 10.1016/j.optlastec.2020.106393.

J. B. Park, J. W. Ha, S. C. Yoon, C. Lee, I. H. Jung, and D. H. Hwang, “Visible-Light-Responsive High-Detectivity Organic Photodetectors with a 1 μm Thick Active Layer,” ACS Appl. Mater. Interfaces, vol. 10, no. 44, pp. 38294–38301, 2018, doi: 10.1021/acsami.8b13550.

C. H. Swartz and C. B. Winstead, “Fast response organic photodetectors with a thick photoconversion region and fullerene transport layer,” Mater. Sci. Semicond. Process., vol. 91, no. October 2018, pp. 22–26, 2019, doi: 10.1016/j.mssp.2018.11.001.

L. Lv et al., “Significant enhancement of responsivity of organic photodetectors upon molecular engineering,” J. Mater. Chem. C, vol. 7, no. 19, pp. 5739–5747, 2019, doi: 10.1039/c9tc00576e.

L. Li, H. Zhao, C. Liu, L. Li, and T. J. Cui, “Intelligent metasurfaces: control, communication and computing,” eLight, vol. 2, no. 1, 2022, doi: 10.1186/s43593-022-00013-3.

J. Pan, W. Deng, X. Xu, T. Jiang, X. Zhang, and J. Jie, “Photodetectors based on small-molecule organic semiconductor crystals,” Chinese Phys. B, vol. 28, no. 3, 2019, doi: 10.1088/1674-1056/28/3/038102.

R. Estrada et al., “Developing efficient small molecule-based organic photo-couplers by optimizing the cathode interfacial layer in the photodetector,” J. Mater. Chem. C, pp. 5378–5387, 2023, doi: 10.1039/d3tc00188a.

Y. Khan, D. Han, J. Ting, M. Ahmed, R. Nagisetty, and A. C. Arias, “Organic multi-channel optoelectronic sensors for wearable health monitoring,” IEEE Access, vol. 7, pp. 128114–128124, 2019, doi: 10.1109/ACCESS.2019.2939798.

L. E. M. Matheus, A. B. Vieira, L. F. M. Vieira, M. A. M. Vieira, and O. Gnawali, “Visible Light Communication: Concepts, Applications and Challenges,” IEEE Commun. Surv. Tutorials, vol. 21, no. 4, pp. 3204–3237, 2019, doi: 10.1109/COMST.2019.2913348.

C. Vega-Colado et al., “An all-organic flexible visible light communication system,” Sensors (Switzerland), vol. 18, no. 9, pp. 1–12, 2018, doi: 10.3390/s18093045.

T. Otto, M. Cehovski, O. Char, R. Caspary, W. Kowalsky, and T. Rabe, “Highly sensitive wide range organic photodiode based on zinc phthalocyanine:C 60,” vol. 5, no. 2016, pp. 1–5, 2019, doi: 10.1002/pssa.201532856.

A. Goldberg et al., “Estimation of electron and hole mobility of 50 homogeneous fullerene amorphous structures (C60, C58B2, C58N2 and C58NB) using a percolation corrected Marcus theory model,” Org. Electron., vol. 78, p. 105571, 2020, doi: 10.1016/j.orgel.2019.105571.

R. J. Martín-Palma and A. Lakhtakia, “Vapor-Deposition Techniques,” in Engineered Biomimicry, Pennsylvania: Elsevier Inc., 2013, pp. 383–398. doi: 10.1016/B978-0-12-415995-2.00015-5.

R. Estrada et al., “Developing efficient small molecule-based organic photo-couplers by optimizing the cathode interfacial layer in the photodetector,” J. Mater. Chem. C, 2023, doi: 10.1039/d3tc00188a.

Z. Zhao, C. Xu, L. Niu, X. Zhang, and F. Zhang, “Recent Progress on Broadband Organic Photodetectors and their Applications,” Laser Photonics Rev., vol. 14, no. 11, pp. 1–24, 2020, doi: 10.1002/lpor.202000262.




DOI: http://dx.doi.org/10.12962/j24604682.v20i1.17927

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.