Comparison of Supervised Learning Algorithms for Cigarette and Vape Smoke Classification Using Electronic Nose

Muhammad Agung Farghani, Nurul Izzah Wijayakusuma, Budi Sumanto

Abstract


This research discusses applying the Supervised Learning method using Electronic Nose to classify the types of cigarette and vape smoke in the air. Electronic Nose is used as a scent detector that can identify the characteristics of smoke from both sources. Three Supervised Learning algorithms, namely KNN, SVM, and Decision Tree, were applied to compare the performance in classifying smoke types. The data comprised reference air samples, air contaminated by manufactured cigarette smoke, rolled cigarettes, and vape. The results showed that all three Supervised Learning algorithms successfully provided an excellent classification for cigarette and vape smoke types using data from Electronic Nose. The best accuracy result was achieved by SVM, with an accuracy rate of  96.55%. This research contributes to identifying sources of air pollution that have the potential to endanger human health


Keywords


air; electronic Nose; smoke; supervised learning;

Full Text:

PDF

References


M. Sari, D. N. Santi, and I. Chahaya, “ANALISA KADAR CO DAN NO2 DI UDARA DAN KELUHAN GANGGUAN SALURAN PERNAPASAN PADA PEDAGANG KAKI LIMA DI PASAR SANGKUMPAL BONANG KOTA PADANGSIDIMPUAN TAHUN 2013,” 2013.

R. D. Ratnani, “Teknik Pengendalian Pencemaran Udara Yang Diakibatkan oleh Partikel,” Majalah Ilmiah Momentum, vol. 4, no. 2, pp. 27–32, 2008.

F. Kedokteran, U. M. Semarang, and A. A. Id, “Rokok Elektrik dan Rokok Konvensional Merusak Alveolus Paru,” Prosiding Seminar Nasional Unimus, vol. 1, 2018.

A. Sabir, M. Asikin, W. ( Program, S. Kesehatan, M. Fakultas, and I. Kesehatan, “PENGARUH UAP ROKOK ELEKTRIK TERHADAP KUALITAS UDARA AMBIEN PADA LINGKUNGAN PENGGUNA ROKOK ELEKTRIK DI KOTA PAREPARE The Influence of Electric Cigarette Vapor on Ambien Air Quality in Electric Cigarette User Environment in Parepare City,” 2019. [Online]. Available: http://jurnal.umpar.ac.id/index.php/makes

D. Lelono and K. Prastya, “Karakterisasi Pola dan Konsentrasi Gas Polutan Berbasis E-Nose,” IJEIS, vol. 3, no. 1, pp. 83–94, 2013.

O. Attallah and I. Morsi, “An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence,” Measurement (Lond), vol. 199, Aug. 2022, doi: 10.1016/j.measurement.2022.111458.

K. Kusairi, M. Muthmainnah, Imam Tazi, and Moh. Fajrul Falah, “Klasifikasi Pola Aroma Teh Hijau Menggunakan Hidung Elektronik (E-Nose) Berbasis Linear Diskriminan Analisis (LDA),” JURNAL PENDIDIKAN MIPA, vol. 12, no. 3, pp. 868–874, Sep. 2022, doi: 10.37630/jpm.v12i3.682.

S. S. A. Umri, M. S. Firdaus, and A. Primajaya, “ANALISIS DAN KOMPARASI ALGORITMA KLASIFIKASI DALAM INDEKS PENCEMARAN UDARA DI DKI JAKARTA,” Jurnal Informatika dan Komputer) Akreditasi KEMENRISTEKDIKTI, vol. 4, no. 2, 2021, doi: 10.33387/jiko.

N. A. Sinaga, R. Ramadani, K. Dalimunthe, M. S. A. A. Lubis, and R. Rosnelly, “Komparasi Metode Decision Tree, KNN, dan SVM Untuk Menentukan Jurusan Di SMK,” Jurnal Sistem Komputer dan Informatika (JSON), vol. 3, no. 2, p. 94, Dec. 2021, doi: 10.30865/json.v3i2.3598.

R. A. Nugraha, E. W. Hidayat, N. I. Kurniati, and R. N. Shofa, “Klasifikasi Jenis Buah Jambu Biji Menggunakan Algoritma Principal Component Analysis dan K-Nearest Neighbor,” 2023.

A. Chandra, Gregorius, M. S. J. Immanuel, A. A. S. Gunawan, and Anderies, “Accuracy Comparison of Different Machine Learning Models in Phishing Detection,” in ICOIACT 2022 - 5th International Conference on Information and Communications Technology: A New Way to Make AI Useful for Everyone in the New Normal Era, Proceeding, Institute of Electrical and Electronics Engineers Inc., 2022, pp. 24–29. doi: 10.1109/ICOIACT55506.2022.9972107.

D. R. Prehanto, A. D. Indriyanti, I. K. D. Nuryana, and G. S. Permadi, “Classification based on K-Nearest Neighbor and Logistic Regression method of coffee using Electronic Nose,” IOP Conf Ser Mater Sci Eng, vol. 1098, no. 3, p. 032080, Mar. 2021, doi: 10.1088/1757-899x/1098/3/032080.

O. Attallah and I. Morsi, “An electronic nose for identifying multiple combustible/harmful gases and their concentration levels via artificial intelligence,” Measurement (Lond), vol. 199, Aug. 2022, doi: 10.1016/j.measurement.2022.111458.

D. K. Agustika and D. K. Triyana, “METODE MANIPULASI BASELINE UNTUK MENGATASI SENSOR DRIFT PADA SENSOR GAS UNTUK UJI DISKRIMINASI JAMU THE METHOD OF BASELINE MANIPULATION TO OVERCOME THE SENSOR DRIFT ON GAS SENSOR TEST FOR HERBAL DRINKS DISCRIMINATION,” 2016.

J. Yan et al., “Feature Extraction from Sensor Data for Detection of Wound Pathogen Based on Electronic Nose,” 2012.

A. A. NUGROHO, W. WIJAYA, J. HENDRY, and B. SUMANTO, “Seleksi Fitur Aroma Teh Kombucha menggunakan ANN untuk Optimasi Kinerja Sistem E-nose,” ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, vol. 10, no. 2, p. 334, Apr. 2022, doi: 10.26760/elkomika.v10i2.334.

I. Widhi Saputro and B. Wulan Sari, “Uji Performa Algoritma Naïve Bayes untuk Prediksi Masa Studi Mahasiswa Naïve Bayes Algorithm Performance Test for Student Study Prediction,” Citec Journal, vol. 6, no. 1, 2019.




DOI: http://dx.doi.org/10.12962/j24604682.v20i3.17939

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.