Analysis of the Effect of Porosity on the Acoustic and Elastic Properties of Materials Using Ultrasonic Immersion Pulse-Echo Technique

Sri Maiyena, Anis Nazihah Mat Daud, Shahrul Kadri Ayop

Abstract


The material properties is an important aspect in determining the potential application of a material. Hence, this study is carried out to determine the effect of porosity on the material properties (acoustic properties and elastic properties) of material using the pulse echo immersion ultrasonic technique. This study comprises of two acoustic properties (longitudinal velocity and acoustic impedance) and five elastic properties (Young's modulus, shear modulus, bulk modulus, longitudinal modulus and Lamé constant). Two types of PMMA samples are used for this study; nonporous sample and porous sample. The result indicated that the material properties (acoustic properties and elastic properties) of porous sample are less than the material properties of non-porous sample. It indicated that the porosity gives significant effect towards the material properties.  


Keywords


porositas, sifat akustik, sifat elastis, teknik pulsa-gema rendaman

Full Text:

PDF

References


W. Pabst, T. Uhlí, E. Gregorová, and A. Wiegmann, “Journal of the European Ceramic Society Young ’ s modulus and thermal conductivity of model materials with convex or concave pores – from analytical predictions to numerical results,” no. November 2017, 2018, doi: 10.1016/j.jeurceramsoc.2018.01.040.

S. Firstov, “Optimazation of Mechanical Properties of Porous Materials,” Powder Metall. Prog., vol. 1, no. 1, pp. 5–18, 2001.

C. Schlumberger and M. Thommes, “Characterization of Hierarchically Ordered Porous Materials by Physisorption and Mercury Porosimetry—A Tutorial Review,” Adv. Mater. Interfaces, vol. 8, no. 4, 2021, doi: 10.1002/admi.202002181.

S. Saraf, A. Singh, and B. G. Desai, “Estimation of Porosity and Pore size distribution from Scanning Electron Microscope image data of Shale samples: A case study on Jhuran formation of Kachchh Basin, India.,” Explor. Geophys., vol. 2019, no. 1, pp. 10–13, 2019, doi: 10.1080/22020586.2019.12073197.

Y. Lu, “Electron Microscopy Characterization of the Pore System in Gas Shale.” University of Sydney, p. 99, 2016.

C. P. Hagan, J. F. Orr, C. A. Mitchell, and N. J. Dunne, “Critical evaluation of pulse-echo ultrasonic test method for the determination of setting and mechanical properties of acrylic bone cement : Influence of mixing technique,” Ultrasonics, vol. 56, pp. 279–286, 2015, doi: 10.1016/j.ultras.2014.08.008.

T. Ishimoto et al., “Quantitative ultrasound (QUS) axial transmission method reflects anisotropy in micro-arrangement of apatite crystallites in human long bones: A study with 3-MHz-frequency ultrasound,” Bone, vol. 127, no. June, pp. 82–90, 2019, doi: 10.1016/j.bone.2019.05.034.

U. Umiatin, T. Oktaviana, E. Wijaya, R. Riandini, and F. Yusuf, “the Bone Microstructure Identification Model Based on Backscatter Mode of Ultrasound,” Spektra J. Fis. dan Apl., vol. 6, no. 1, pp. 61–70, 2021, doi: 10.21009/spektra.061.07.

S. Pawlak, “A comparison study of the pulse-echo and through-transmission ultrasonics in glass / epoxy composites,” no. June 2007, 2014.

M. Switchgear, “An Ultrasonic Longitudinal Through-Transmission Method to Measure the Compressive Internal Stress in Epoxy Composite Specimens of Gas-Insulated,” 2020.

M. Jakovljevic et al., “approach Local speed of sound estimation in tissue using pulse-echo ultrasound : Model-based approach,” Acoust. Soc. Am., vol. 144, no. Jully, 2018, doi: 10.1121/1.5043402.

S. J. Sanabria et al., “Speed of sound ultrasound : a pilot study on a novel technique to identify sarcopenia in seniors,” Eur. Radiol., vol. 29, pp. 3–12, 2019.

E. Eren, S. Kurama, and I. Solodov, “Characterization of porosity and defect imaging in ceramic tile using ultrasonic inspections,” Ceram. Int., vol. 38, no. 3, pp. 2145–2151, 2012, doi: 10.1016/j.ceramint.2011.10.056.

M. Kulokas, R. Kazys, and L. Mazeika, “Non-destructive evaluation of green ceramic body density by ultrasonic technique,” Elektron. ir Elektrotechnika, no. 5, pp. 71–76, 2011, doi: 10.5755/j01.eee.111.5.360.

C. Chen, Y. Xiang, L. Tang, X. Li, L. Qin, and W. Cao, “Ultrasonic pulse-echo technique for the characterization of elastic constants of single domain Pb(Zn1/3Nb2/3)O3–5.5%PbTiO3 single crystals with 3m symmetry,” J. Mater. Sci., vol. 55, pp. 12737–12746, 2020, doi: 10.1007/s10853-020-04919-6.

H. Judawisastra, Claudia, F. Sasmita, and T. P. Agung, “Study of Elastic Modulus Determination of Polymenrs with Ultrasonic Method,” Int. J. Adv. Sci. Engieering Inf. Technol., vol. 547, no. 3, pp. 874–879, 2019, doi: 10.1088/1757-899X/547/1/012047.

G. L. et al M.Aliabouzar, “Acoustic and mechanical characterization of 3D printed scaffolds for tissue engineering applications,” Biomed. Mater., 2018.

B. Yochev, S. Kutzarov, D. Ganchev, and K. Staykov, “Investigation of Ultrasonic Properties of Hydrophilic Polymers for Dry-coupled Inspection,” 9th Eur. Conf. Non-Destructive Test., p. 10, 2006.

J. Yi et al., “Polyacrylamide/Alginate double-network tough hydrogels for intraoral ultrasound imaging,” J. Colloid Interface Sci., vol. 578, pp. 598–607, 2020, doi: 10.1016/j.jcis.2020.06.015.

R. Barkmann, P. Laugier, U. Moser, S. Dencks, F. Padilla, and G. Haiat, “A method for the estimation of femoral bone mineral density from variables of ultrasound transmission through the human femur,” Bone, vol. 40, pp. 37–44, 2007, doi: 10.1016/j.bone.2006.07.010.

A. Cafarelli, P. Miloro, A. Verbeni, M. Carbone, and A. Menciassi, “Speed of sound in rubber-based materials for ultrasonic phantoms,” J. Ultrasound, vol. 19, no. 4, pp. 251–256, 2016, doi: 10.1007/s40477-016-0204-7.

R. Raišutis, A. Voleišis, and R. Kažys, “Application of the through transmission ultrasonic technique for estimation of the phase velocity dispersion in plastic materials Application of the through transmission ultrasonic technique for estimation of the phase velocity dispersion in plastic mater,” no. September, 2014.

H. Fredrik, “Model-Based Characterization of Thin Layers Using Pulse-Echo Ultrasound Model-Based Characterization of Thin Layers Using Pulse-Echo,” in Preceedings of the International Congress on Ultrasonic, 2007, no. January, doi: 10.3728/ICUltrasonics.2007.Vienna.1562.

Y. Tasinkevych, K. Falińska, P. A. Lewin, and J. Litniewski, “Improving broadband ultrasound attenuation assessment in cancellous bone by mitigating the influence of cortical bone : phantom and in-vitro study,” Ultrasonics, 2018, doi: 10.1016/j.ultras.2018.06.018.

H. Nguyen Minh, J. Du, and K. Raum, “Estimation of Thickness and Speed of Sound in Cortical Bone Using Multifocus Pulse-Echo Ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 67, no. 3, pp. 568–579, 2020, doi: 10.1109/TUFFC.2019.2948896.

G. L. Workman and D. Kishoni, Nondestructive Testing Handbook, Third. United States of America: American Society for Nondestructive Testing, 2007.

P. Laugier and G. Ha, “Introduction to the Physics of Ultrasound,” pp. 29–45, 2011, doi: 10.1007/978-94-007-0017-8.

J. Krautkrämer and H. Krautkrämer, “Plane Sound Waves at Boundaries,” Ultrason. Test. Mater., pp. 15–45, 1990, doi: 10.1007/978-3-662-10680-8_3.

H. A. Afifi, “Ultrasonic pulse echo studies of the physical properties of PMMA, PS, and PVC,” Polym. - Plast. Technol. Eng., vol. 42, no. 2, pp. 193–205, 2003, doi: 10.1081/PPT-120017922.

J. E. Carlson, J. Van Deventer, A. Scolan, and C. Carlander, “Frequency and temperature dependence of acoustic properties of polymers used in pulse-echo systems,” in Proceedings of the IEEE Ultrasonics Symposium, 2003, pp. 885–888, doi: 10.1109/ultsym.2003.1293541.

A. N. Mat Daud, R. Jaafar, S. K. Ayop, and M. S. Rohani, “A computerized system based on an alternative pulse echo immersion technique for acoustic characterization of non-porous solid tissue mimicking materials,” Meas. Sci. Technol., vol. 29, p. 045902, 2018, doi: 10.1088/1361-6501/aaa728.

A. N. Mat Daud, S. K. Ayop, M. I. H. Yaacob, and J. Rosly, “Computerized acoustical characterization system of medical phantoms,” in AIP Conference Proceedings, 2013, vol. 1528, pp. 406–411, doi: 10.1063/1.4803635.

J. Lochab and V. R. Singh, “Acoustic behaviour of plastics for medical applications,” Indian J. Pure Appl. Phys., vol. 42, pp. 595–599, 2004.

J. D. . Cheeke, Fundamental and Applications of Ultrasonic Waves. Florida, 2000.

D. Ensminger and L. J. Bond, Ultrasonics: Fundamentals, technologies, and applications, third edition. 2011.

D. . Cristman, “Dynamic Properties of Poly (Methylmethacrylate) (Pmma),” Michigan, 1972.

A. S. Al-aboodi and A. A. Al-nasser, “Bone Porosity Modeling and FE Simulation,” Adv. Mech. Aeronaut. Prod. Tech., no. December, pp. 0–5, 2014, doi: 10.13140/2.1.1607.6485.

J. Ye, H. J. Kim, S. J. Song, S. S. Kang, K. Kim, and M. H. Song, “The far-field scattering response of a side drilled hole in single/layered anisotropic media in ultrasonic pulse-echo setup,” Wave Motion, vol. 48, no. 3, pp. 275–289, 2011, doi: 10.1016/j.wavemoti.2010.11.003.

C. D. et al Z. El , M. Fellah, “Ultrasound Measuring of Porosity in Porous Materials,” in chapter 5, Porosity-Process, Technologies and Applications, 2018, pp. 111–124.

R. Magjarevic, “IFMBE Proceedings,” in The Third International Conference on the Develovment of Biomedical Engineering in Vietnam, 2010, vol. 27.

M. A. A. Wahab, R. Sudirman, M. A. A. Razak, F. K. C. Harun, N. A. A. Kadir, and N. H. Mahmood, “Incident and reflected two waves correlation with cancellous bone structure,” Telkomnika (Telecommunication Comput. Electron. Control., vol. 18, no. 4, pp. 1968–1975, 2020, doi: 10.12928/TELKOMNIKA.V18I4.14828.

E. Eren and S. Kurama, “Characterization of mechanical properties of porcelain tile using ultrasonics,” Gazi Univ. J. Sci., vol. 25, no. 3, pp. 761–768, 2012.




DOI: http://dx.doi.org/10.12962/j24604682.v20i3.20656

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.