Analysis of glucomannan molecule in Porang (Ammorphophallus Muelleri Blume) flour using nuclear magnetic resonance
Abstract
The porang tuber (Ammorphophallus Muelleri Blume) is a bulb plant belonging to the Araceae family, which contains the polysaccharide substance of glucomannan. In this work, the porang flour has been purified from tubers by a centrifugation method. To study the content of compounds and types of molecules that make up glucomannan, characterization was carried out using 1H and 13C nuclear magnetic resonance (NMR). The analysis on chemical shift data from both NMR spectra can be concluded that glucomannan in porang is more dominantly constructed by glucose molecules rather than mannose. From these results, it is also known that the toxic compound Ca-oxalate which is part of the porang compound has been reduced during the centrifugation process.
Keywords
Full Text:
PDFReferences
A. Faridah and S. Bambang Widjanarko, “Optimization of Multilevel Ethanol Leaching Process of Porang Flour (Amorphophallus muelleri) Using Response Surface Methodology,” Int. J. Adv. Sci. Eng. Inf. Technol., vol. 3, pp. 74–80, 2013, doi: 10.18517/ijaseit.3.2.309.
N. Nurlela, N. Ariesta, E. Santosa, and T. Muhandri, “Physicochemical properties of glucomannan isolated from fresh tubers of Amorphophallus muelleri Blume by a multilevel extraction method,” Food Res., vol. 6, no. 4, pp. 345–353, 2022, doi: 10.26656/fr.2017.6(4).580.
Y. Q. Zhang, B. J. Xie, and X. Gan, “Advance in the applications of konjac glucomannan and its derivatives,” Carbohydr. Polym., vol. 60, no. 1, pp. 27–31, 2005, doi: 10.1016/j.carbpol.2004.11.003.
L. Zhou, T. Xu, J. Yan, X. Li, Y. Xie, and H. Chen, “Fabrication and characterization of matrine-loaded konjac glucomannan/fish gelatin composite hydrogel as antimicrobial wound dressing,” Food Hydrocoll., vol. 104, no. September 2019, p. 105702, 2020, doi: 10.1016/j.foodhyd.2020.105702.
K. Kato and K. Matsuda, “Studies on the chemical structure of konjac mannan,” Agric. Biol. Chem., vol. 33, no. 10, pp. 1446–1453, 1969, doi: 10.1080/00021369.1969.10859484.
H. Zhang et al., “A crosslinking strategy to make neutral polysaccharide nanofibers robust and biocompatible: With konjac glucomannan as an example,” Carbohydr. Polym., vol. 215, no. March, pp. 130–136, 2019, doi: 10.1016/j.carbpol.2019.03.075.
K. Katsuraya, K. Okuyama, K. Hatanaka, R. Oshima, T. Sato, and K. Matsuzaki, “Constitution of konjac glucomannan: Chemical analysis and 13C NMR spectroscopy,” Carbohydr. Polym., vol. 53, no. 2, pp. 183–189, 2003, doi: 10.1016/S0144-8617(03)00039-0.
M. Chua, K. Chan, T. J. Hocking, P. A. Williams, C. J. Perry, and T. C. Baldwin, “Methodologies for the extraction and analysis of konjac glucomannan from corms of Amorphophallus konjac K. Koch,” Carbohydr. Polym., vol. 87, no. 3, pp. 2202–2210, 2012, doi: 10.1016/j.carbpol.2011.10.053.
S. Ogasawara, “Electrophoresis on Konjac mannan gel,” SEIBUTSU BUTSURI KAGAKU, vol. 31, no. 3, pp. 155–158, 1987, doi: 10.2198/sbk.31.155.
O. Tatirat and S. Charoenrein, “Physicochemical properties of konjac glucomannan extracted from konjac flour by a simple centrifugation process,” Lwt, vol. 44, no. 10, pp. 2059–2063, 2011, doi: 10.1016/j.lwt.2011.07.019.
T. Sleator, “Nuclear Magnetic Resonance in Diamagnetic Substances,” 2013.
I. A. Ismail, R. Riga, O. Suryani, M. Insani, N. Lian Pernadi, and A. Febriyanti, “Analisis Spektrum 1H-NMR: Penjelasan Sederhana,” Int. J. Acad. Multidiscip. Res., vol. 6, no. 12, pp. 336–342, 2022.
G. R. . Suwandi, S. . Khotimah, and F. Haryanto, “ZERO-FIELD NUCLEAR MAGNETIC RESONANCE FOR STUDY OF ANTIFERROMAGNETIC PROPERTIES OF FeF3 MATERIALS,” vol. 12, no. 1, pp. 90–97, 2016, doi: 10.15294/jpfi.
Y. Hu et al., “NMR-Based Methods for Protein Analysis,” Anal. Chem., vol. 93, no. 4, pp. 1866–1879, 2021, doi: 10.1021/acs.analchem.0c03830.
A. Bax, W. Egan, and P. Kováč, “New nmr techniques for structure determination and resonance assignments of complex carbohydrates,” J. Carbohydr. Chem., vol. 3, no. 4, pp. 593–611, 1984, doi: 10.1080/07328308408057920.
A. Bax, “Structure determination and spectral assignment by pulsed polarization transfer via long-range 1H13C couplings,” J. Magn. Reson., vol. 57, no. 2, pp. 314–318, 1984, doi: 10.1016/0022-2364(84)90133-1.
U. A.J and L. B.S.K, Teknik Modern Spektroskopi NMR :
P. Thirukumaran, A. S. Parveen, and M. Sarojadevi, “Synthesis and copolymerization of fully biobased benzoxazines from renewable resources,” ACS Sustain. Chem. Eng., vol. 2, no. 12, pp. 2790–2801, 2014, doi: 10.1021/sc500548c.
N. Bouroumane et al., “New Pyrazole-Based Ligands: Synthesis, Characterization, and Catalytic Activity of Their Copper Complexes,” Arab. J. Sci. Eng., vol. 47, no. 1, pp. 269–279, 2022, doi: 10.1007/s13369-021-05343-x.
F. M. Dayrit and A. C. de Dios, “1H and 13C NMR for the Profiling of Natural Product Extracts: Theory and Applications,” Spectrosc. Anal. - Dev. Appl., 2017, doi: 10.5772/intechopen.71040.
L. M. Harwood and T. D. W. Claridge, “o Organic Spectroscopy Organic Spectroscopy”.
P. K. Agrawal, “NMR Spectroscopy in the structural elucidation of oligosaccharides and glycosides,” Phytochemistry, vol. 31, no. 10, pp. 3307–3330, 1992, doi: 10.1016/0031-9422(92)83678-R.
L. Song et al., “Synthesis, antimicrobial, moisture absorption and retention activities of kojic acid-grafted konjac glucomannan oligosaccharides,” Polymers (Basel)., vol. 11, no. 12, pp. 1–13, 2019, doi: 10.3390/polym11121979.
N. Chakraborty, “Bioactivity-guided Isolation and Structural Characterization of Endogenously Bioactivity-guided Isolation and Structural Characterization of Endogenously Accreted Raphide Crystals in Ipomoea aquatic,” no. June, 2020.
DOI: http://dx.doi.org/10.12962/j24604682.v20i3.21753
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.