Estimation Earthquake Source Parameters in Mentawai Island Region Using Moment Tensor
Abstract
Mentawai Islands is a seismically active zone that often experiences earthquakes due to the interaction of tectonic plates, so it is necessary to analyze the earthquake source parameters to understand its characteristics. This research aims to determine the earthquake source parameters in the Mentawai Islands in 2023 for earthquakes with magnitude Mw ≥ 5.5. Three-component waveform data from GEOFON network is used for moment tensor inversion process in time domain. Waveform data used in the frequency range of 0.01 to 0.025 Hz with a match value of calculation and observation data worth >70%. The results of waveform data analysis show that the earthquake in the study area was caused by tectonic activity characterized by the percentage of Double-Couple (DC) more dominant than Compensated Linear Vector Dipole (CLVD), with shallow depth. In addition, the focal mechanism of the waveform data analysis indicates that the type of fault that causes the earthquake in the study area is a reverse fault. This result is consistent with earthquake catalogs (GCMT, USGS, and GFZ).
Keywords
Full Text:
PDFReferences
F. Z. Shabrina, I. Meilano, W. Windupranata, and N. R. Hanifa, “Measure coastal disaster resilience using community disaster resilience index (CDRI) in Mentawai Island, Indonesia,” AIP Conference Proceedings, vol. 1987, no. 1, p. 020080, Jul. 2018, doi: 10.1063/1.5047365.
T. Lay, C. J. Ammon, H. Kanamori, Y. Yamazaki, K. F. Cheung, and A. R. Hutko, “The 25 October 2010 Mentawai tsunami earthquake (Mw 7.8) and the tsunami hazard presented by shallow megathrust ruptures: OCTOBER 2010 MENTAWAI TSUNAMI EARTHQUAKE,” Geophys. Res. Lett., vol. 38, no. 6, p. n/a-n/a, Mar. 2011, doi: 10.1029/2010GL046552.
E. M. Hill et al., “The 2010 Mw 7.8 Mentawai earthquake: Very shallow source of a rare tsunami earthquake determined from tsunami field survey and near‐field GPS data,” J. Geophys. Res., vol. 117, no. B6, p. 2012JB009159, Jun. 2012, doi: 10.1029/2012JB009159.
L. Zhang, W. Liao, J. Li, and Q. Wang, “Estimation of the 2010 Mentawai tsunami earthquake rupture process from joint inversion of teleseismic and strong ground motion data,” Geodesy and Geodynamics, vol. 6, no. 3, pp. 180–186, May 2015, doi: 10.1016/j.geog.2015.03.005.
A. V. Newman, G. Hayes, Y. Wei, and J. Convers, “The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation,” Geophysical Research Letters, vol. 38, no. 5, Mar. 2011, doi: 10.1029/2010GL046498.
A. Chiang, R. Gök, Y. M. Tarabulsi, S. Y. El-Hadidy, W. W. Raddadi, and A. D. Mousa, “Seismic source characterization of the Arabian Peninsula and Zagros Mountains from regional moment tensor and coda envelopes,” Arab J Geosci, vol. 14, no. 1, p. 9, Jan. 2021, doi: 10.1007/s12517-020-06266-x.
S. E. Minson and D. S. Dreger, “Stable inversions for complete moment tensors,” Geophysical Journal International, vol. 174, no. 2, pp. 585–592, Aug. 2008, doi: 10.1111/j.1365-246X.2008.03797.x.
P. M. Shearer, INTRODUCTION TO Seismology, SECOND EDITION. New York: Cambridge University Press, 2009. [Online]. Available: www.cambridge.org/9780521882101
T. Lay and T. C. Wallace, Modern global seismology. in International geophysics series, no. v. 58. San Diego: Academic Press, 1995.
C. Alvizuri, V. Silwal, L. Krischer, and C. Tape, “Estimation of full moment tensors, including uncertainties, for nuclear explosions, volcanic events, and earthquakes,” Journal of Geophysical Research: Solid Earth, vol. 123, no. 6, pp. 5099–5119, 2018.
V. Vavryčuk, “Moment Tensors: Decomposition and Visualization,” in Encyclopedia of Earthquake Engineering, M. Beer, I. A. Kougioumtzoglou, E. Patelli, and I. S.-K. Au, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2015, pp. 1–16. doi: 10.1007/978-3-642-36197-5_288-1.
T. J. Fitch, D. W. McCowan, and M. W. Shields, “Estimation of the seismic moment tensor from teleseismic body wave data with applications to intraplate and mantle earthquakes,” Journal of Geophysical Research: Solid Earth, vol. 85, no. B7, pp. 3817–3828, 1980.
M. L. Jost and R. B. Herrmann, “A Student’s Guide to and Review of Moment Tensors,” Seismological Research Letters, vol. 60, no. 2, pp. 37–57, Apr. 1989, doi: 10.1785/gssrl.60.2.37.
L. Knopoff and M. J. Randall, “The compensated linear‐vector dipole: A possible mechanism for deep earthquakes,” Journal of Geophysical Research, vol. 75, no. 26, pp. 4957–4963, 1970.
M. N. S. Muqtadir, D. Sianipar, I. Suardi, W. Wandono, G. Daniarsyad, and D. Daryono, “Source Analysis of April 2, 2023, Magnitude 5.6 Flores Sea Earthquake North of Bima, Sumbawa, Indonesia,” presented at the IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2024, p. 012026.
A. Guilhem Trilla and Y. Cano, “Using Moment Tensor Inversions for Rapid Seismic Source Detection and Characterization: Application to the North Korean Nuclear Tests,” Pure Appl. Geophys., Mar. 2024, doi: 10.1007/s00024-024-03455-7.
J. Hu, T.-S. Phạm, and H. Tkalčić, “Seismic moment tensor inversion with theory errors from 2-D Earth structure: implications for the 2009–2017 DPRK nuclear blasts,” Geophysical Journal International, vol. 235, no. 3, pp. 2035–2054, 2023.
A. Caputa, Ł. Rudziński, and S. Cesca, “How to Assess the Moment Tensor Inversion Resolution for Mining Induced Seismicity: A Case Study for the Rudna Mine, Poland,” Front. Earth Sci., vol. 9, p. 671207, Jul. 2021, doi: 10.3389/feart.2021.671207.
J. Kan et al., “Discrimination of microseismic events in coal mine using multifractal method and moment tensor inversion,” Fractal and Fractional, vol. 6, no. 7, p. 361, 2022.
C. Liu et al., “Source types of induced earthquakes in underground mines: Revealed by regional moment tensor inversion,” Geomechanics and Geophysics for Geo-Energy and Geo-Resources, vol. 10, no. 1, p. 106, 2024.
F. Rodríguez-Cardozo et al., “The 2014–2015 complex collapse of the Bárðarbunga caldera, Iceland, revealed by seismic moment tensors,” Journal of Volcanology and Geothermal Research, vol. 416, p. 107275, 2021.
O. Sandanbata, H. Kanamori, L. Rivera, Z. Zhan, S. Watada, and K. Satake, “Moment tensors of ring‐faulting at active volcanoes: Insights into vertical‐CLVD earthquakes at the Sierra Negra caldera, Galápagos Islands,” Journal of Geophysical Research: Solid Earth, vol. 126, no. 6, p. e2021JB021693, 2021.
M. Beyreuther, R. Barsch, L. Krischer, T. Megies, Y. Behr, and J. Wassermann, “ObsPy: A Python toolbox for seismology,” Seismological Research Letters, vol. 81, no. 3, pp. 530–533, 2010.
J. Havskov and L. Ottemoller, Routine data processing in earthquake seismology: with sample data, exercises and software. Springer Science & Business Media, 2010.
M. Wadhawan, D. Hazarika, and S. Saikia, Recent Developments in Using Seismic Waves as a Probe for Subsurface Investigations: Theory and Practices. Leiden: CRC Press/Balkema, 2022.
S. Stein and M. Wysession, An Introduction to Seismology, Earthquakes, and Earth Structure. Blackwell Publishing Ltd., 2003.
R. B. Herrmann, “Computer Programs in Seismology: An Evolving Tool for Instruction and Research,” Seismological Research Letters, vol. 84, no. 6, pp. 1081–1088, Nov. 2013, doi: 10.1785/0220110096.
D. Dreger and B. Romanowicz, “Source Characteristics of Event in the San Francisco Bay Region,” USGS, Report 94–176, 1994. doi: 10.3133/ofr94176.
A. Chiang, “Time Domain Moment Tensor Inversion in Python,” Lawrence Livermore National Laboratory (LLNL), Livermore, CA (United States), 2020.
A. Chiang, D. S. Dreger, S. R. Ford, and W. R. Walter, “Source Characterization of Underground Explosions from Combined Regional Moment Tensor and First-Motion Analysis,” Bulletin of the Seismological Society of America, vol. 104, no. 4, pp. 1587–1600, Aug. 2014, doi: 10.1785/0120130228.
S. I. Franco, A. Iglesias, and E. Fukuyama, “Moment tensor catalog for Mexican earthquakes: almost two decades of seismicity,” Geofísica internacional, vol. 59, no. 2, pp. 54–80, 2020.
P. Kolář, Kagan Angle (https://www.mathworks.com/matlabcentral/fileexchange/70040-kagan-angle). (2024). Accessed: Dec. 16, 2024. [Online]. Available: (https://www.mathworks.com/matlabcentral/fileexchange/70040-kagan-angle)
G. Ekström, M. Nettles, and A. Dziewoński, “The global CMT project 2004–2010: Centroid-moment tensors for 13,017 earthquakes,” Physics of the Earth and Planetary Interiors, vol. 200, pp. 1–9, 2012.
U.S. Geological Survey, “Search Earthquake Catalog.” Accessed: Dec. 16, 2024. [Online]. Available: https://earthquake.usgs.gov/earthquakes/search
GEOFON Data Center, “GEOFON Seismic Network.” GFZ Data Services, 1993. doi: 10.14470/TR560404.
M. N. Fahmi, D. P. Sari, E. Meilianda, and S. Koesuma, “Implementing and evaluating an automatic centroid moment tensor procedure for the Indonesia region and surrounding areas,” Earth and Planetary Physics, vol. 8, no. 4, pp. 609–620, 2024.
Y. Kagan, “3-D rotation of double-couple earthquake sources,” Geophysical Journal International, vol. 106, no. 3, pp. 709–716, 1991.
S. Pondrelli, S. Salimbeni, G. Ekström, A. Morelli, P. Gasperini, and G. Vannucci, “The Italian CMT dataset from 1977 to the present,” Physics of the Earth and Planetary Interiors, vol. 159, no. 3–4, pp. 286–303, Dec. 2006, doi: 10.1016/j.pepi.2006.07.008.
M. M. Mukti, S. C. Singh, I. Deighton, N. D. Hananto, R. Moeremans, and H. Permana, “Structural evolution of backthrusting in the Mentawai Fault Zone, offshore Sumatran forearc,” Geochemistry, Geophysics, Geosystems, vol. 13, no. 12, 2012.
M. Nakano, T. Yamashina, H. Kumagai, and H. Inoue, “Centroid moment tensor catalogue for Indonesia,” Physics of the Earth and Planetary Interiors, vol. 183, no. 3–4, pp. 456–467, 2010.
M. Diament et al., “Mentawai fault zone off Sumatra: A new key to the geodynamics of western Indonesia,” Geology, vol. 20, no. 3, pp. 259–262, 1992.
D. Tian et al., PyGMT: A Python interface for the Generic Mapping Tools. (Dec. 2024). Zenodo. doi: 10.5281/zenodo.14535921.
DOI: http://dx.doi.org/10.12962%2Fj24604682.v21i3.22563
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.