Metrik Reissner-Nordstr¨om dalam Teori Gravitasi Einstein

Canisius Bernard

Abstract


Intisari
Dalam makalah ini akan ditinjau kembali bahwa persamaan medan gravitasi Einstein mempunyai solusi yaitu solusi Reissner-Nordstr¨om dengan menghitung seluruh komponen dari tensor Einstein dan tensor energi momentum dengan adanya interaksi elektromagnetik. Solusi Reissner-Nordstr¨om adalah solusi yang menggambarkan ruang waktu di luar sebuah bola pejal statik bermassa M dan bermuatan listrik Q. Solusi Reissner- Nordstr¨om juga merupakan solusi lubang hitam statik bermuatan listrik dalam teori Einstein-Maxwell.


ABSTRACT


In this paper, we review that Reissner-Nordstr¨om metric is the solution of Einstein gravitational field equation. Reissner-Nordstr¨om solution describes spacetime outside a static spherically symmetric charged mass. To solve the field equation, we calculate all the non-zero components of Einstein tensor and energy-momentum tensor of the electromagnetic field of the charged object. One finds that the Reissner-Nordstr¨om metric is also a charged static black hole solution in Einstein-Maxwell theory.


Keywords


Persamaan medan Einstein, metrik Reissner-Nordstr¨om, lubang hitam

Full Text:

PDF

References


A. Einstein, Grundlage der allgemeinen Relativit¨atstheorie, Ann. Phys. (Leipzig) 49, 769 (1916).

M. P. Hobson, G. P. Efstathiou, dan A. N. Lasenby, General Relativity: An Introduction for Physicists, 1st ed. (Cambridge Univerity Press, New York, 2006).

K. Schwarzschild, U¨ ber das Gravitationsfeld eines Massenpunktes

nach der Einsteinschen Theorie, Abh. Konigl. Preuss. Akad. Wissenschaften Jahre 1906, 92, Berlin, 1907 1916, 189 (1916)

H. Reissner, U¨ ber die Eigengravitation des elektrischen Feldesnach der Einsteinschen Theorie, Ann. Phys. (Leipzig) 50, 106 (1916).

G. Nordstr¨om, On the Energy of the Gravitational Field in Einstein’s Theory, Proc. Kon. Ned. Akad. Wet. 20, 1238 (1918).

R. P. Kerr, Gravitational field of a spinning mass as an example of algebraically specialmetrics, Phys. Rev. Lett. 11, 237 (1963).

E. T. Newman and A. I. Janis, Note on the Kerr spinning particle metric, J. Math. Phys. 6, 915 (1965).

E. T. Newman, R. Couch, K. Chinnapared, A. Exton, A. Prakash and R. Torrence, Metric of a Rotating, Charged Mass, J. Math. Phys. 6, 918 (1965).

R. Ruffini and J. A. Wheeler, Introducing the black hole, Phys. Today 24, no. 1, 30 (1971).

R. M. Wald, Construction of Metric and Vector Potential Perturbations of a Reissner-Nordstrom Black Hole, Proc. R. Soc. Lond. A369, 67-81 (1979).

P. Pani, E. Berti and L. Gualtieri, Scalar, electromagnetic, and gravitational perturbations of Kerr-Newman black holes in the slow-rotation limit, Phys. Rev. D 88, 064048 (2013).

T. P. Cheng, Relativity, Gravitation and Cosmology: A basic introduction, 1st ed. (Oxford University Press Inc., New York, 2005).




DOI: http://dx.doi.org/10.12962/j24604682.v13i1.2128

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.