Optimasi Fuzzy Inference System pada Sistem Deteksi Fibrilasi Atrium dengan Fitur Elektrokardiogram

Kemas Farosi, Nuryani Nuryani, Darmanto Darmanto

Abstract


Intisari


Penelitian tentang deteksi fibrilasi atrium (FA) menggunakan elektrokardiogram dan Fuzzy Inference System (FIS) telah dilaksanakan. Fitur yang digunakan adalah statistik interval RR yaitu rata-rata interval RR (RRave) dan standar deviasi interval RR (RRstd). Optimalisasi arsitektur FIS yang dilakukan berupa variasi pada jumlah fitur interval RR, fungsi keanggotaan FIS dan metode defuzzifikasi FIS. Berdasarkan hasil eksperimen, arsitektur FIS terbaik dalam mendeteksi FA adalah yang menggunakan kedua fitur (RRave dan RRstd) sekaligus dengan fungsi keanggotaan gaussian dan metode defuzzifikasi mean of maxima. Kinerja pada arsitektur tersebut dinyatakan dengan sensitivitas, spesitifitas dan akurasi yang masing-masing secara berurutan bernilai 81,55%, 82,12% dan 81,93%.

ABSTRACT


A study about detection of atrial fibrillation using electrocardiogram and fuzzy inference system (FIS) has been succesfully conducted. Statistical features of RR interval is used and they are mean and standard deviation of RR interval. FIS architecture is optimized by variation number of features, FIS membership function and defuzzification methods. Based on experimental result, the best FIS architecture in FA detection is which uses both statistical features (RRave and RRstd) at once, with gaussian membership functions and mean of maxima deffuzification method. The best architecture performances are 81,55%, 82,12% and 81,93% in terms of sensitivity, specificity and accuracy, respectively.


Keywords


Atrial fibrillation,RR interval,fuzzy inference system

Full Text:

PDF

References


L. Sornmo, P. Laguna, Bioelectrical Signal Processing in Cardiac and Neurological Applications (1st Edition, Elsevier Academic Press, Burlington, 2005).

S. Bellet, Clinical Disorders of the Heart Beat (3rd. ed, Lea & Febiger, Philadelphia, 1971).

E.J. Hall, C.A. Guyton, Textbook of medical physiology (12th edition, Elsevier, Philadelphia, 2011).

Y.K. Ju, et. al., Frontiers in Physiology, 6, 86 (2015).

Y. Miyasaka, et. al., Circulation Journal of American Heart Association, 114, 119-125 (2006).

S.R. Mane, et. al., International Journal of Engineering Research and Applications, 3, 327-332 (2013).

G. Chen, T.T. Pham, Fuzzy Sets, Fuzzy Logic, and Fuzzy Control Systems (CRC Press LLC, Florida, 2011).

M.K. Passino, S. Yurkovich, Fuzzy Control (Addison Wesley Longman, California, 1998)

P. Tatento, L. Glass, Medical and Biological Engineering and Computing, 39, 664-671 (2011).

Y. Benjamini, The American Statistician, 42(4), 257-262 (1988).

W. Zhu, N. Zeng, N., N.Wang, Sensitivity, specificity, accuracy, associated confidence interval and ROC analysis with practical SAS implementations, NESUG proceedings: health care and life sciences, Baltimore, Maryland, 1, 1-9, 2010.

Sahu, Nitin K., S. Ayub, J.P. Saini, International Journal of Advanced Research in Computer Science and Software Engineering, 3(11), 925-932 (2013).

N. Nuryani, et. al., Procedia Computer Science, 72, 154-161

(2015).




DOI: http://dx.doi.org/10.12962/j24604682.v13i1.2130

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.