Design and Manufacturing Audio Bioharmonic Technology with Manipulate Peak Frequencies for Crop Field

Refpo Rahman


Applied physics can be involved and integrated with various fields of science. Sonic bloom technology by utilizing sound waves in fact can increase plant growth. This research is the development of the audio bioharmonic (ABH) device to create an efficient, practical, and easy-to-use for farmers. The design and manufacturing of an ABH device based on an Arduino UNO Atmega 328p with manipulated frequencies have been done. The original sound source of Garengpung (Dundubia Manifera) was manipulated around the range of 3000-5000 Hz and the frequency spectrum was calculated using Fast Fourier Transform (FFT) analysis. The results show that the peak frequencies obtained are 3241, 4167, and 4963 Hz as the sound sources of mp3 files. Furthermore, the ABH device was validated by comparing the results of the FFT analysis of the sound source of the mp3 files with the sound recording of the ABH device. As the result, the deviations of the peak frequency obtained are 259, 140, and 172 Hz. And the last, the sound pressure levels (SPL) of audio bioharmonic output at different frequencies are measured using a sound level meter in real-time for 30 minutes. All frequencies have stable SPL at 80-100 dB.


Dundubia Manifera; Audio Bioharmonic; FFT Analisys; Matlab R2015a; Sound Pressure Levels; Arduino Uno

Full Text:



J. Y. Kim, S. I. Lee, J. A. Kim, M. Muthusamy,1 and M. J. Jeong, “Specific audible sound waves improve flavonoid contents and antioxidative properties of sprouts,” Sci. Hortic. (Amsterdam)., vol. 276, p. 109746, 2021, doi: 10.1016/j.scienta.2020.109746.

R. H. E. Hassanien, T. Z. Hou, Y. F. Li, and B. M. Li, “Advances in Effects of Sound Waves on Plants,” J. Integr. Agric., vol. 13, no. 2, pp. 335–348, 2014, doi: 10.1016/S2095-3119(13)60492-X.

M. E. K. Chowdhury, H.-S. Lim, and H. Bae, “Update on the Effects of Sound Wave on Plants,” Res. Plant Dis., vol. 20, no. 1, pp. 1–7, 2014, doi: 10.5423/rpd.2014.20.1.001.

I. Pujiwati, B. Guritno, N. Aini, and S. P. Sakti, “Examining Use of Sonic Bloom Technology on the Stomata Opening of Drought-Stressed Soybean,” Biosci. Biotechnol. Res. Asia, vol. 15, no. 4, pp. 861–869, 2018, doi: 10.13005/bbra/2695.

N. Kadarisman, D. K. Agustika, A. Purwanto, V. Alvianty, and B. Wibowo, “Characterization of Sound Spectrum based on Natural Animals as an Alternative Source of Harmonic System Audio Bio Stimulators for Increasing Productivity of Food Plants,” J. Phys. Conf. Ser., vol. 1387, no. 1, 2019, doi: 10.1088/1742-6596/1387/1/012098.

J. Prasetyo, T. Mandang, and I. Subrata, “Efek Paparan Musik dan Noise pada Karakteristik Morfologi dan Produktivitas Tanaman Sawi Hijau (Brassica Juncea),” J. Keteknikan Pertan., vol. 2, no. 1, p. 21959, 2014.

I. G. P. Suryadarma, Widiastuti, Nur Kadarisman, and W. S. B. Dwandaru, “the Increase of Stomata Opening Area in Corn Plant Stimulated By Dundubia Manifera Insect Sound,” Int. J. Eng. Technol. Manag. Res., vol. 6, no. 5, pp. 107–116, 2020, doi: 10.29121/ijetmr.v6.i5.2019.377.

E. Afifah, M. Nugrahani, N. Prasetyo, I. Berlian, N. Rinojati, and N. Kadarisman, ”Utilization of Audio Bioharmony to Improve Rubber (Hevea brasiliensis) Growth in the Nursery,” Curr. Agric. Res. J., vol. 3, no. 1, pp. 0106, 2015, doi:10.12944/carj. 3.1.01.

N. Kadarisman, F. A. Sulistiani, W. S. B. Dwandaru, R. I. Wisnuwijaya, and A. Sugiarto, “Audio Bio Harmonic With Wt5001 Smartchip using Solar Cell,” J. Fis. dan Apl., vol. 16, no. 2, p. 71, 2020, doi: 10.12962/j24604682.v16i2.3750.

R. Rahman et al., ”Peningkatan Hasil Panen Tomat di Desa Sambirejo Dengan Penerapan Teknologi Sonic Bloom,” Dharma Raflesia J. Ilm. Pengemb. dan Penerapan IPTEKS, vol. 18, no. 2, pp. 248258, 2020, doi: 10.33369/dr.v18i2.13242

D. Rosana, N. Kadarisman, A. Maryanto, and A. Sugiharsono, “The evaluation of science learning program, technology and society application of Audio Bio Harmonic System with solar energy to improve crop productivity,” J. Pendidik. IPA Indones., vol. 6, no. 1, pp. 63–70, 2017, doi: 10.15294/jpii.v6i1.9596.

T. Harčarik, J. Bocko, and K. Masláková, “Frequency analysis of acoustic signal using the Fast Fourier Transformation in MATLAB,” Procedia Eng., vol. 48, pp. 199–204, 2012, doi: 10.1016/j.proeng.2012.09.505.

N. L. Molin, C. Molin, R. J. Dalpatadu, and A. K. Singh, “Prediction of obstructive sleep apnea using Fast Fourier Transform of overnight breath recordings,” Mach. Learn. with Appl., vol. 4, no. October 2020, p. 100022, 2021, doi: 10.1016/j.mlwa.2021.100022.

N. Xing, S. Jin, Y. Li, and S. Wang, “Twice-FFT demodulation for signal distortion in optical fiber FP acoustic sensor,” Heliyon, vol. 6, no. 12, p. e05790, 2020, doi: 10.1016/j.heliyon.2020.e05790.



  • There are currently no refbacks.

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.