Multi-Objective Prediction of Drilling EMS-45 with Finite Element, Backpropagation Neural Network, and Metaheuristic Model

Mohammad Khoirul Effendi, Agus Sigit Pramono, Suhardjono Suhardjono, Sampurno Sampurno, Dinny Harnany, Fungky Dyan Pratiwi


Making holes with the minimum thrust force and torque using a drilling machine is challenging for researchers because of the difficulties in setting input parameter such as the type of drill tool, point of angle, and feeding speed. Therefore, the trial-and-error method to predict optimum input parameters through experiment can be replaced with the Back Propagation Neural Network (BPNN) and metaheuristic method (i.e., genetic algorithm (GA) and Simulated Annealing (SA)) method to reduce costs and time. BPNN can be used to represent the input-output correlation precisely. However, obtaining a model with minimum Mean Squared Error (MSE) requires much data for training, testing, and validation. Since the obtained data from experiments requires expensive costs, combining data from experimental and simulation using ANSYS should considered to reduce the experimental costs. This study was then conducted to answer the research problem using an EMS 45 tool steel as the workpiece, with the three input parameters: type of drill tools (HSS M2 and HSS M35), the points of angle (118 and 134 degrees) and feeding speed rates (0.07 and 0.1 mm/s). The 32 data from experimental and modeling were used to model the correlation between the input and output parameters of the drilling process using BPNN. The BPNN’s network-model with minimum MSE is then used as the objective function to determine the input parameters to obtain the smallest value of thrust force and torque using the hybrid method using GA and SA.  


Full Text:



R. Hambli, “Blanking tool wear modeling using the finite element method,” Int. J. Mach. Tools Manuf., vol. 41, no. 12, pp. 1815–1829, Sep. 2001, doi: 10.1016/S0890-6955(01)00024-4.

K. S. Park, C. J. VanTyne, and Y. H. Moon, “Process analysis of multistage forging by using finite element method,” J. Mater. Process. Technol., vol. 187–188, pp. 586–590, Jun. 2007, doi: 10.1016/j.jmatprotec.2006.11.036.

R. Quiza, O. López-Armas, and J. P. Davim, “Finite Element in Manufacturing Processes,” in Hybrid Modeling and Optimization of Manufacturing: Combining Artificial Intelligence and Finite Element Method, R. Quiza, O. López-Armas, and J. P. Davim, Eds., in SpringerBriefs in Applied Sciences and Technology, Berlin, Heidelberg: Springer, 2012, pp. 13–37. doi: 10.1007/978-3-642-28085-6_2.

I. Singh, N. Bhatnagar, and P. Viswanath, “Drilling of uni-directional glass fiber reinforced plastics: Experimental and finite element study,” Mater. Des., vol. 29, no. 2, pp. 546–553, Jan. 2008, doi: 10.1016/j.matdes.2007.01.029.

J. S. Strenkowski, C. C. Hsieh, and A. J. Shih, “An analytical finite element technique for predicting thrust force and torque in drilling,” Int. J. Mach. Tools Manuf., vol. 44, no. 12, pp. 1413–1421, Oct. 2004, doi: 10.1016/j.ijmachtools.2004.01.005.

O. Isbilir and E. Ghassemieh, “Finite Element Analysis of Drilling of Carbon Fibre Reinforced Composites,” Appl. Compos. Mater., vol. 19, no. 3, pp. 637–656, Jun. 2012, doi: 10.1007/s10443-011-9224-9.

O. Isbilir and E. Ghassemieh, “Finite Element Analysis of Drilling of Titanium Alloy,” Procedia Eng., vol. 10, pp. 1877–1882, Jan. 2011, doi: 10.1016/j.proeng.2011.04.312.

W. A. Lughmani, K. Bouazza-Marouf, and I. Ashcroft, “Drilling in cortical bone: a finite element model and experimental investigations,” J. Mech. Behav. Biomed. Mater., vol. 42, pp. 32–42, Feb. 2015, doi: 10.1016/j.jmbbm.2014.10.017.

V. A. Phadnis, F. Makhdum, A. Roy, and V. V. Silberschmidt, “Drilling in carbon/epoxy composites: Experimental investigations and finite element implementation,” Compos. Part Appl. Sci. Manuf., vol. 47, pp. 41–51, Apr. 2013, doi: 10.1016/j.compositesa.2012.11.020.

F. P. Nurullah, B. Pramujati, Suhardjono, M. K. Effendi, B. O. P. Soepangkat, and R. Norcahyo, “Multi response prediction of end-milling CFRP with backpropagation neural network,” AIP Conf. Proc., vol. 2114, no. 1, p. 030013, Jun. 2019, doi: 10.1063/1.5112417.

D. E. Ighravwe and S. A. Oke, “Machining performance analysis in end milling: Predicting using ANN and a comparative optimisation study of ANN/BB-BC and ANN/PSO,” Eng. J., vol. 19, no. 5, Art. no. 5, 2015, doi: 10.4186/ej.2015.19.5.121.

S. S. Panda, A. K. Singh, D. Chakraborty, and S. K. Pal, “Drill wear monitoring using back propagation neural network,” J. Mater. Process. Technol., vol. 172, no. 2, pp. 283–290, Feb. 2006, doi: 10.1016/j.jmatprotec.2005.10.021.

A. K. Singh, S. S. Panda, D. Chakraborty, and S. Pal, “Predicting drill wear using an artificial neural network,” Int. J. Adv. Manuf. Technol., vol. 28, pp. 456–462, Mar. 2006, doi: 10.1007/s00170-004-2376-0.

S. S. Panda, D. Chakraborty, and S. K. Pal, “Flank wear prediction in drilling using back propagation neural network and radial basis function network,” Appl. Soft Comput., vol. 8, no. 2, pp. 858–871, Mar. 2008, doi: 10.1016/j.asoc.2007.07.003.

B. Soepangkat, R. Norcahyo, M. Khoirul Effendi, and B. Pramujati, “Multi-response optimization of carbon fiber reinforced polymer (CFRP) drilling using back propagation neural network-particle swarm optimization (BPNN-PSO),” Eng. Sci. Technol. Int. J., vol. 23, Nov. 2019, doi: 10.1016/j.jestch.2019.10.002.

V. Sonkar, K. Abhishek, S. Datta, and S. S. Mahapatra, “Multi-objective Optimization in Drilling of GFRP Composites: A Degree of Similarity Approach,” Procedia Mater. Sci., vol. 6, pp. 538–543, Jan. 2014, doi: 10.1016/j.mspro.2014.07.068.

K. Gallagher and M. Sambridge, “Genetic algorithms: A powerful tool for large-scale nonlinear optimization problems,” Comput. Geosci., vol. 20, no. 7, pp. 1229–1236, Aug. 1994, doi: 10.1016/0098-3004(94)90072-8.

A. F. Shapiro, “The merging of neural networks, fuzzy logic, and genetic algorithms,” Insur. Math. Econ., vol. 31, no. 1, pp. 115–131, Aug. 2002, doi: 10.1016/S0167-6687(02)00124-5.

R. L. Haupt, “An introduction to genetic algorithms for electromagnetics,” IEEE Antennas Propag. Mag., vol. 37, no. 2, pp. 7–15, Apr. 1995, doi: 10.1109/74.382334.

Y. Lin, Z. Bian, and X. Liu, “Developing a dynamic neighborhood structure for an adaptive hybrid simulated annealing – tabu search algorithm to solve the symmetrical traveling salesman problem,” Appl. Soft Comput., vol. 49, pp. 937–952, Dec. 2016, doi: 10.1016/j.asoc.2016.08.036.

X.-H. Wang and J.-J. Li, “Hybrid particle swarm optimization with simulated annealing,” in Proceedings of 2004 International Conference on Machine Learning and Cybernetics (IEEE Cat. No.04EX826), Aug. 2004, pp. 2402–2405 vol.4. doi: 10.1109/ICMLC.2004.1382205.

D. C. Drucker, “An Analysis of the Mechanics of Metal Cutting,” J. Appl. Phys., vol. 20, no. 11, pp. 1013–1021, Nov. 1949, doi: 10.1063/1.1698265.

B. McClain, S. A. Batzer, and G. I. Maldonado, “A numeric investigation of the rake face stress distribution in orthogonal machining,” J. Mater. Process. Technol., vol. 123, no. 1, pp. 114–119, Apr. 2002, doi: 10.1016/S0924-0136(02)00052-3.


Creative Commons License
JMES The International Journal of Mechanical Engineering and Sciences by Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at