Quasi-Static Cyclic Response of Unidirectional Thin-Ply Hybrid Composites

Putu Suwarta, Gergely Czel, Mohamad Fotouhi, Marco L. Longana, Sutikno Sutikno, Michael R. Wisnom

Abstract


Quasi-static cyclic loading of unidirectional (UD) thin-ply hybrid composites was conducted to assess the extent of stiffness loss with increasing applied strain. For this study, three types of hybrid configuration were examined: SG1/MR401/SG1, SG1/TR301/SG1, SG1/TR302/SG1, where SG is a high strength glass fibre and MR40 is an intermediate modulus carbon fibre while TR30 is a standard modulus carbon fibre. The strain at first carbon ply failure and the knee point strain (εk) for the SG1/TR301/SG1 hybrid is higher than for the SG1/TR302/SG1 hybrid. This is due to the ‘hybrid effect’ which provides a delay in damage initiation due to a constraint on broken carbon cluster development. For SG1/MR401/SG1 and SG1/TR302/SG1 configurations, the stiffness reduction over the course of loading was governed by fragmentation of the carbon plies and delamination between the carbon and glass plies. A smaller stiffness reduction for the SG1/TR301/SG1 configuration compared to the other hybrid configurations was observed with the fragmentation of the carbon ply as the main damage mechanism responsible for the reduction. With each loading cycle, there was a small amount of hysteresis and residual strain. The response of the UD thin-ply hybrid laminates are considered pseudo-ductile because the damage in the form of ply fragmentation and stable delamination, leads to gradual loss of stiffness. The stable delamination of this hybrid material is due to the low energy release rate of the thin carbon ply.

Keywords


Hybridisation, unidirectional, quasi-static cyclic loading, gradual failure

Full Text:

PDF

References


P. D. Mangalgiri, “Composite materials for aerospace applications,” Bull. Mater. Sci., vol. 22, no. 3, pp. 657–664, 1999, doi: 10.1007/BF02749982.

G. Savage, “Composite materials technology in formula 1 motor racing,” SPE Automot. Compos. Div. - 8th Annu. Automot. Compos. Conf. Exhib. ACCE 2008 - Road to Light. Perform., vol. 1, no. July 2008, pp. 109–139, 2008, [Online]. Available: http://www.scopus.com/inward/record.url?eid=2-s2.0-70349974760&partnerID=40&md5=b97b29edf7088d427571bb19f36b8538.

D. S. S. Swanek and J. Carey, “Braided composite materials for the production of lightweight, high rigidity golf shafts,” Sport. Eng., vol. 10, no. 4, pp. 195–208, 2010, doi: 10.1007/bf02933571.

L. Mishnaevsky, K. Branner, H. N. Petersen, J. Beauson, M. McGugan, and B. F. Sørensen, “Materials for wind turbine blades: An overview,” Materials (Basel)., vol. 10, no. 11, pp. 1–24, 2017, doi: 10.3390/ma10111285.

K. L. Edwards, “An overview of the technology of fibre-reinforced plastics for design purposes,” Mater. Des., vol. 19, no. 1–2, pp. 1–10, 2002, doi: 10.1016/s0261-3069(98)00007-7.

K. W. Gan, M. R. Wisnom, and S. R. Hallett, “Effect of high through-thickness compressive stress on fibre direction tensile strength of carbon/epoxy composite laminates,” Compos. Sci. Technol., vol. 90, pp. 1–8, 2014, doi: 10.1016/j.compscitech.2013.10.010.

S. Sutikno, R. F. Rizal, and A. Safaat, “Numerical Study of Epoxy-Ramie Fiber Composite as a Type IV Ballistic Resistant Material,” Int. J. Mech. Eng. Sci., vol. 5, no. 1, p. 30, 2021, doi: 10.12962/j25807471.v5i1.8772.

K. Allaer, I. De Baere, P. Lava, W. Van Paepegem, and J. Degrieck, “On the in-plane mechanical properties of stainless steel fibre reinforced ductile composites,” Compos. Sci. Technol., vol. 100, pp. 34–43, 2014, doi: 10.1016/j.compscitech.2014.05.009.

M. G. Callens, L. Gorbatikh, and I. Verpoest, “Ductile steel fibre composites with brittle and ductile matrices,” Compos. Part A Appl. Sci. Manuf., vol. 61, pp. 235–244, 2014, doi: 10.1016/j.compositesa.2014.02.006.

M. G. Callens, L. Gorbatikh, E. Bertels, B. Goderis, M. Smet, and I. Verpoest, “Tensile behaviour of stainless steel fibre/epoxy composites with modified adhesion,” Compos. Part A Appl. Sci. Manuf., vol. 69, pp. 208–218, 2015, doi: 10.1016/j.compositesa.2014.11.022.

M. G. Callens, P. De Cuyper, L. Gorbatikh, and I. Verpoest, “Effect of fibre architecture on the tensile and impact behaviour of ductile stainless steel fibre polypropylene composites,” Compos. Struct., vol. 119, pp. 528–533, 2015, doi: 10.1016/j.compstruct.2014.09.028.

Y. Swolfs, P. De Cuyper, M. G. Callens, I. Verpoest, and L. Gorbatikh, “Hybridisation of two ductile materials – Steel fibre and self-reinforced polypropylene composites,” Compos. Part A Appl. Sci. Manuf., vol. 100, pp. 48–54, 2017, doi: 10.1016/j.compositesa.2017.05.001.

G. Marom, S. Fischer, F. R. Tuler, and H. D. Wagner, “Hybrid effects in composites: conditions for positive or negative effects versus rule-of-mixtures behaviour,” J. Mater. Sci., vol. 13, no. 7, pp. 1419–1426, 1978, doi: 10.1007/BF00553194.

N. Svensson, R. Shishoo, and M. Gilchrist, “Manufacturing of thermoplastic composites from commingled yarns - A review,” J. Thermoplast. Compos. Mater., vol. 11, no. 1, pp. 22–56, 1998, doi: 10.1177/089270579801100102.

W. M. Diao H, Bismarck A, Robinson P, “Pseudo-ductile behaviour of unidirectional fibre reinforced polyamide-12 composite by intra-tow hybridization,” 2012.

T. Hayashi, K. Koyama, A. Yamazaki, and M. Kihira, “Development of new material properties by hybrid composition. 1st report.,” Fukugo Zairyo (composite materials), vol. 1, no. 1. pp. 18–20, 1972.

Hayashi T, Koyama K, Yamazaki A, Kihira M, “Development of new material properties by hybrid composition.2nd report.” Composite Materials, pp. 21–25, 1972.

A. R. Bunsell and B. Harris, “Hybrid carbon and glass fibre composites,” Composites, vol. 5, no. 4, pp. 157–164, 1974, doi: 10.1016/0010-4361(74)90107-4.

P. W. Manders and M. G. Bader, “The strength of hybrid glass/carbon fibre composites - Part 1 failure strain enhancement and failure mode,” J. Mater. Sci., vol. 16, no. 8, pp. 2233–2245, 1981, doi: 10.1007/BF00542387.

S. Sihn, R. Y. Kim, K. Kawabe, and S. W. Tsai, “Experimental studies of thin-ply laminated composites,” Compos. Sci. Technol., vol. 67, no. 6, pp. 996–1008, 2007, doi: 10.1016/j.compscitech.2006.06.008.

T. Yokozeki, A. Kuroda, A. Yoshimura, T. Ogasawara, and T. Aoki, “Damage characterization in thin-ply composite laminates under out-of-plane transverse loadings,” Compos. Struct., vol. 93, no. 1, pp. 49–57, 2010, doi: 10.1016/j.compstruct.2010.06.016.

H. Saito et al., “Effect of ply-thickness on impact damage morphology in CFRP laminates,” J. Reinf. Plast. Compos., vol. 30, no. 13, pp. 1097–1106, 2011, doi: 10.1177/0731684411416532.

G. Czél and M. R. Wisnom, “Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg,” Compos. Part A Appl. Sci. Manuf., vol. 52, pp. 23–30, 2013, doi: 10.1016/j.compositesa.2013.04.006.

G. Czél, M. Jalalvand, and M. R. Wisnom, “Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites,” Compos. Struct., vol. 143, pp. 362–370, 2016, doi: 10.1016/j.compstruct.2016.02.010.

M. Fotouhi, P. Suwarta, M. Jalalvand, G. Czel, and M. R. Wisnom, “Detection of fibre fracture and ply fragmentation in thin-ply UD carbon/glass hybrid laminates using acoustic emission,” Compos. Part A Appl. Sci. Manuf., vol. 86, 2016, doi: 10.1016/j.compositesa.2016.04.003.

P. Suwarta, M. Fotouhi, G. Czél, M. Longana, and M. R. Wisnom, “Fatigue behaviour of pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites,” Compos. Struct., vol. 224, no. January, p. 110996, 2019, doi: 10.1016/j.compstruct.2019.110996.

M. Jalalvand, G. Czél, and M. R. Wisnom, “Numerical modelling of the damage modes in UD thin carbon/glass hybrid laminates,” Compos. Sci. Technol., vol. 94, pp. 39–47, 2014, doi: 10.1016/j.compscitech.2014.01.013.

M. Jalalvand, G. Czél, and M. R. Wisnom, “Damage analysis of pseudo-ductile thin-ply UD hybrid composites – A new analytical method,” Compos. Part A Appl. Sci. Manuf., vol. 69, pp. 83–93, 2015, doi: 10.1016/j.compositesa.2014.11.006.

M. Jalalvand, G. Czél, and M. R. Wisnom, “Parametric study of failure mechanisms and optimal configurations of pseudo-ductile thin-ply UD hybrid composites,” Compos. Part A Appl. Sci. Manuf., vol. 74, pp. 123–131, 2015, doi: 10.1016/j.compositesa.2015.04.001.

J. G. Keer, “Behaviour of cracked fibre composites under limited cyclic loading,” Int. J. Cem. Compos., vol. 3, no. 3, pp. 0–7, 1981.

J. G. Keer, “Influence of fibre characteristics on polyolefin reinforced composites under limited cyclic loading,” Int. J. Cem. Compos. Light. Concr., vol. 9, no. October 1986, pp. 145–156, 1987.

N. Takeda and S. Ogihara, “Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates,” Compos. Sci. Technol., vol. 52, pp. 309–318, 1994, doi: 10.1016/0266-3538(94)90166-X.

M. R. Wisnom, J. Fuller, P. Suwarta, and G. Czel, “Repeated tensile loading of thin-ply pseudo-ductile laminates,” pp. 2–9, 2015.

J. Aveston and A. Kelly, “Theory of multiple fracture of fibrous composites,” J. Mater. Sci., vol. 8, no. 3, pp. 352–362, 1973, doi: 10.1007/BF00550155.

J. D. Fuller, “Pseudo-ductility of thin ply angle-ply laminates,” 2015.

Mitsubishi-Rayon, “Mitsubishi-Rayon. Mitsubishi Rayon Pyro l Carbon Fibres.” https://www.mrc.co.jp/pyrofil/english/product/index.html.

SKChemicals, “SKChemicals. Standard Resin : K 50.” http://www.skchemicals.com/en/business2/bs_skyflex.asp.

Owens Corning, “OCV Reinforcements Flite Strand S -glass.” http://www.ocvreinforcements.com/hp/docs/FliteStrand_DS.pdf.

G. Czél, M. Jalalvand, and M. R. Wisnom, “Hybrid specimens eliminating stress concentrations in tensile and compressive testing of unidirectional composites,” Compos. Part A Appl. Sci. Manuf., vol. 91, pp. 436–447, 2016, doi: 10.1016/j.compositesa.2016.07.021.

G. Czél, M. Jalalvand, and M. R. Wisnom, “Design and characterisation of advanced pseudo-ductile unidirectional thin-ply carbon/epoxy-glass/epoxy hybrid composites,” Compos. Struct., vol. 143, pp. 362–370, 2016, doi: 10.1016/j.compstruct.2016.02.010.

M. R. Wisnom, G. Cz??l, Y. Swolfs, M. Jalalvand, L. Gorbatikh, and I. Verpoest, “Hybrid effects in thin ply carbon/glass unidirectional laminates: Accurate experimental determination and prediction,” Compos. Part A Appl. Sci. Manuf., vol. 88, pp. 131–139, 2016, doi: 10.1016/j.compositesa.2016.04.014.

B. W. ROSEN, “Tensile failure of fibrous composites,” AIAA J., vol. 2, no. 11, pp. 1985–1991, 1964, doi: 10.2514/3.2699.

F. Taheri, Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications. Woodhead Publishing Series in Civil and Structural Engineering, 2013.

M. Jalalvand et al., “Energy dissipation during delamination in composite materials – An experimental assessment of the cohesive law and the stress-strain field ahead of a crack tip,” Compos. Sci. Technol., vol. 134, pp. 115–124, 2016, doi: 10.1016/j.compscitech.2016.08.001.

E. K. Gamstedt and R. Talreja, “Fatigue damage mechanisms in unidirectional carbon-fibre-reinforced plastics,” J. Mater. Sci., vol. 34, no. 11, pp. 2535–2546, 1999, doi: 10.1023/A:1004684228765.

M. R. Wisnom, J. Fuller, P. Suwarta, and G. Czel, “Repeated tensile loading of thin-ply pseudo-ductile laminates,” ASC proceeding 2015, pp. 2–9, 2015.




DOI: http://dx.doi.org/10.12962/j25807471.v5i2.8614

Creative Commons License
JMES The International Journal of Mechanical Engineering and Sciences by Lembaga Penelitian dan Pengabdian kepada Masyarakat (LPPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jmes.