Small Area Estimation Of Expenditure Per-capita in Banyuwangi with Hierarchical Bayesian and Empirical Bayes Methods
Abstract
Keywords
Full Text:
PDFReferences
J. N. K. Rao, Small Area Estimation. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2003.
N. G. N. Prasad and J. N. K. Rao, “The Estimation of the Mean Squared Error of Small-Area Estimators,” J. Am. Stat. Assoc., vol. 85, no. 409, p. 163, Mar. 1990.
G. Ndeng’e, “Geographic Dimensions of Well-Being in Kenya: Where are the Poor?,” Nairobi, Kenya, 2003.
A. Kurnia and K. A. Notodiputro, “Penerapan Metode JAckknife dalam Pendugaan Area Kecil,” Forum Stat. dan Komputasi, vol. 11, no. 1, pp. 12–16, 2006.
A. D. Wardani, “Perbandingan Metode Empirical Bayes (EB) dan Empirical Best Linear Unbiased Prediction (EBLUP) pada Pendugaan Area Kecil (Studi Kasus Pendugaan Pengeluaran Per Kapita di Kota Bogor),” Institut Pertanian Bogor, 2008.
A. T. Rumiati, “Model Bayes untuk Pendugaan Area Kecil dengan Penarikan Contoh berpeluang Tidak Sama Pada Kasus Respon Binomial dan Multinomial,” Institut Pertanian Bogor, 2012.
H. Fausi, “Small Area Estimation Terhadap Pengeluaran per Kapita di Kabupaten Sumenep dengan Metode Empirical Bayes,” Institut Teknologi Sepuluh Nopember, Surabaya, 2011.
M. Y. Darsyah, “Small Area Estimation Terhadap Pengeluaran Per Kapita Pada Level Kecamatan di Kabupaten Sumenep dengan Pendekatan Kernel–Bootstrap,” Institut Teknologi Sepuluh Nopember, Surabaya, 2013.
M. Ghosh and J. N. K. Rao, “Small Area Estimation: An Appraisal,” Stat. Sci., vol. 9, no. 1, pp. 55–76, Feb. 1994.
R. E. Fay and R. A. Herriot, “Estimates of Income for Small Places: An Application of James-Stein Procedures to Census Data,” J. Am. Stat. Assoc., vol. 74, no. 366, p. 269, Jun. 1979.
A. E. Gelfand and A. F. M. Smith, “Sampling-Based Approaches to Calculating Marginal Densities,” J. Am. Stat. Assoc., vol. 85, no. 410, p. 398, Jun. 1990.
S. Chib and E. Greenberg, “Understanding the Metropolis-Hastings Algorithm,” Am. Stat., vol. 49, no. 4, p. 327, Nov. 1995.
J. Jiang, “Linear and Generalized Linear Mixed Models and Their Applications,” in Linear and Generalized Linear Mixed Models and Their Applications, New York, NY: Springer New York, 2007, pp. 1–50.
J. Jiang, P. Lahiri, and S.-M. Wan, “A Unified Jackknife Theory for Empirical Best Prediction with M-estimation,” Ann. Stat., vol. 30, no. 6, pp. 1782–1810, Dec. 2002.
DOI: http://dx.doi.org/10.12962/j23378530.v2i3.a3185
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.
Visit Statistik : Click Here
Visitor :
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.