Catalytic Co-Cracking of Used Cooking Oil Methyl Ester and Polystyrene Waste for Gasoline-Rich Biofuel Over Mesoporous Al-MCM-41 Catalyst
Abstract
Keywords
Full Text:
PDFReferences
Y. Kar and Z. Gürbüz, “Application of blast furnace slag as a catalyst for catalytic cracking of used frying sunflower oil,” Energy Explor. Exploit., vol. 34, no. 2, pp. 262–272, Mar. 2016, doi: 10.1177/0144598716630160.
M. A. R. Dewanto, A. A. Januartrika, H. Dewajani, and A. Budiman, “Catalytic and thermal cracking processes of waste cooking oil for bio-gasoline synthesis,” Las Vegas, Nevada, USA, 2017, p. 020099, doi: 10.1063/1.4978172.
A. Bakhtyari, M. A. Makarem, and M. R. Rahimpour, “Light olefins/bio-gasoline production from biomass,” in Bioenergy Systems for the Future, Elsevier, 2017, pp. 87–148.
A. A. Mancio et al., “Thermal catalytic cracking of crude palm oil at pilot scale: Effect of the percentage of Na2CO3 on the quality of biofuels,” Ind. Crops Prod., vol. 91, pp. 32–43, Nov. 2016, doi: 10.1016/j.indcrop.2016.06.033.
A. Ben Hassen Trabelsi, K. Zaafouri, W. Baghdadi, S. Naoui, and A. Ouerghi, “Second generation biofuels production from waste cooking oil via pyrolysis process,” Renew. Energy, vol. 126, pp. 888–896, Oct. 2018, doi: 10.1016/j.renene.2018.04.002.
M. A. Mohamed, “Biofuel Production from Used Cooking Oil Using Pyrolysis Process,” Int. J. Res. Appl. Sci. Eng. Technol., vol. V, no. XI, pp. 2971–2976, Nov. 2017, doi: 10.22214/ijraset.2017.11410.
S. S. Lam et al., “Microwave vacuum pyrolysis of waste plastic and used cooking oil for simultaneous waste reduction and sustainable energy conversion: Recovery of cleaner liquid fuel and techno-economic analysis,” Renew. Sustain. Energy Rev., vol. 115, p. 109359, Nov. 2019, doi: 10.1016/j.rser.2019.109359.
H. Zhang, R. Xiao, J. Nie, B. Jin, S. Shao, and G. Xiao, “Catalytic pyrolysis of black-liquor lignin by co-feeding with different plastics in a fluidized bed reactor,” Bioresour. Technol., vol. 192, pp. 68–74, Sep. 2015, doi: 10.1016/j.biortech.2015.05.040.
Y.-K. Park et al., “Co-feeding effect of waste plastic films on the catalytic pyrolysis of Quercus variabilis over microporous HZSM-5 and HY catalysts,” Chem. Eng. J., vol. 378, p. 122151, Dec. 2019, doi: 10.1016/j.cej.2019.122151.
S. Karnjanakom et al., “High selectivity and stability of Mg-doped Al-MCM-41 for in-situ catalytic upgrading fast pyrolysis bio-oil,” Energy Convers. Manag., vol. 142, pp. 272–285, Jun. 2017, doi: 10.1016/j.enconman.2017.03.049.
F. Abnisa and W. M. A. Wan Daud, “Optimization of fuel recovery through the stepwise co-pyrolysis of palm shell and scrap tire,” Energy Convers. Manag., vol. 99, pp. 334–345, Jul. 2015, doi: 10.1016/j.enconman.2015.04.030.
M. Sajdak and R. Muzyka, “Use of plastic waste as a fuel in the co-pyrolysis of biomass. Part I: The effect of the addition of plastic waste on the process and products,” J. Anal. Appl. Pyrolysis, vol. 107, pp. 267–275, May 2014, doi: 10.1016/j.jaap.2014.03.011.
K. P. Shadangi and K. Mohanty, “Co-pyrolysis of Karanja and Niger seeds with waste polystyrene to produce liquid fuel,” Fuel, vol. 153, pp. 492–498, Aug. 2015, doi: 10.1016/j.fuel.2015.03.017.
A. Bayat, S. M. Sadrameli, and J. Towfighi, “Production of green aromatics via catalytic cracking of Canola Oil Methyl Ester (CME) using HZSM-5 catalyst with different Si/Al ratios,” Fuel, vol. 180, pp. 244–255, Sep. 2016, doi: 10.1016/j.fuel.2016.03.086.
H. K. Gurdeep Singh et al., “Biogasoline production from linoleic acid via catalytic cracking over nickel and copper-doped ZSM-5 catalysts,” Environ. Res., vol. 186, p. 109616, Jul. 2020, doi: 10.1016/j.envres.2020.109616.
L. Chen, H. Li, J. Fu, C. Miao, P. Lv, and Z. Yuan, “Catalytic hydroprocessing of fatty acid methyl esters to renewable alkane fuels over Ni/HZSM-5 catalyst,” Catal. Today, vol. 259, pp. 266–276, Jan. 2016, doi: 10.1016/j.cattod.2015.08.023.
A. Weinert, P. Bielansky, and A. Reichhold, “Upgrading Biodiesel into Oxygen-Free Gasoline: New Applications for the FCC-Process,” APCBEE Procedia, vol. 1, pp. 147–152, 2012, doi: 10.1016/j.apcbee.2012.03.024.
E. F. Iliopoulou, E. V. Antonakou, S. A. Karakoulia, I. A. Vasalos, A. A. Lappas, and K. S. Triantafyllidis, “Catalytic conversion of biomass pyrolysis products by mesoporous materials: Effect of steam stability and acidity of Al-MCM-41 catalysts,” Chem. Eng. J., vol. 134, no. 1–3, pp. 51–57, Nov. 2007, doi: 10.1016/j.cej.2007.03.066.
D. K. Ratnasari, W. Yang, and P. G. Jönsson, “Two-stage ex-situ catalytic pyrolysis of lignocellulose for the production of gasoline-range chemicals,” J. Anal. Appl. Pyrolysis, vol. 134, pp. 454–464, Sep. 2018, doi: 10.1016/j.jaap.2018.07.012.
H. Juwono, T. Triyono, S. Sutarno, E. T. Wahyuni, I. Ulfin, and F. Kurniawan, “Production of Biodiesel from Seed Oil of Nyamplung (Calophyllum inophyllum) by Al-MCM-41 and Its Performance in Diesel Engine,” Indones. J. Chem., vol. 17, no. 2, pp. 316–321, Jul. 2017, doi: 10.22146/ijc.24180.
Y. Wang et al., “Catalytic co-pyrolysis of waste vegetable oil and high-density polyethylene for hydrocarbon fuel production,” Waste Manag., vol. 61, pp. 276–282, Mar. 2017, doi: 10.1016/j.wasman.2017.01.010.
N. La-Salvia, J. J. Lovón-Quintana, A. S. P. Lovón, and G. P. Valença, “Influence of Aluminum Addition in the Framework of MCM-41 Mesoporous Molecular Sieve Synthesized by Non-Hydrothermal Method in an Alkali-Free System,” Mater. Res., vol. 20, no. 6, pp. 1461–1469, Aug. 2017, doi: 10.1590/1980-5373-mr-2016-1064.
DOI: http://dx.doi.org/10.12962/j23546026.y2020i6.11127
Refbacks
- There are currently no refbacks.
View my Stat: Click Here
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.