Salt Fields Productivity Forecasting Based On Sunlight Duration, Wind Speed and Temperature Data
Abstract
Keywords
Full Text:
PDFReferences
A. S. Jamil, N. Tinaprilla, and S. Suharno, “Faktor-faktor yang mempengaruhi permintaan dan efektivitas kebijakan impor garam Indonesia,” Bul. Ilm. Litbang Perdagang., vol. 11, no. 1, pp. 43–68, Jul. 2017.
M. Effendy, M. Zainuri, and H. Hafiluddin, “Intenfikasi Lahan Garam Rakyat di Kabupaten Sumenep,” in Persembahan Program Studi Ilmu Kelautan untuk Maritim Madura, Madura: Universitas Trunojoyo Madura Press, 2014.
Y. Adiraga and A. H. Setiawan, “Analisis dampak perubahan curah hujan, luas tambak garam, dan jumlah petani garam terhadap produksi usaha garam rakyat di Kecamatan Juwana Kabupaten Pati (Periode 2003-2012),” Diponegoro J. Econ., vol. 3, no. 1, pp. 41–53, 2014.
I. R. Suhelmi, Garam Madura: Tradisi dan Potensi Usaha Garam Rakyat. Jakarta: Kementerian Kelautan dan Perikanan, 2013.
S. Chopra and P. Meindl, Supply Chain Management Strategy, Planning, And Operation, 5th ed. Prentice Hal, Inc, 2013.
D. Amami and I. Ihsannudin, “Efisiensi faktor-faktor produksi garam rakyat,” Media Trend, vol. 11, no. 2, pp. 166–174, Oct. 2016.
S. Herman, E. Eriyatno, E. Noor, and D. Mulyadi, “Identifikasi faktor kunci krisis pada tataniaga garam konsumsi di Indonesia menggunakan proses jejaring analitik (analytic network process),” J. Ris. Ind., vol. 8, no. 3, pp. 205–213, Dec. 2014.
A. Ihwan, “Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat,” in Prosiding SEMIRATA 2013, 2013, vol. 1, no. 1.
D. G. Chen and D. M. Ware, “A neural network model for forecasting fish stock recruitment,” Can. J. Fish. Aquat. Sci., vol. 56, no. 12, pp. 2385–2396, Dec. 1999.
A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, “Predicting Sunspots and Exchange Rates with Connectionist Networks,” in Nonlinear modeling and forecasting, 1992.
S. Nissen, “Implementation of a fast artificial neural network library (FANN),” 2003.
H. Demuth and M. Beale, Neural Network Toolbox, for Use with MATLAB, User’S Guide Version 3.0. Natick, Massachusetts: The MathWorks, Inc., 1993.
C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop learning algorithms,” Neurocomputing, vol. 50, pp. 105–123, Jan. 2003.
J. Heaton, Introduction to Neural Networks with Java, 2. ed., 1. print. St. Louis: Heaton Research, 2008.
T. Masters, Practical Neural Network Recipes in C++. Boston: Morgan Kaufmann, 1993.
L.-F. Hsieh, S.-C. Hsieh, and P.-H. Tai, “Enhanced stock price variation prediction via DOE and BPNN-based optimization,” Expert Syst. Appl., vol. 38, no. 11, pp. 14178–14184, Oct. 2011.
R. J. Hyndman, “Another look at forecast-accuracy metrics for intermittent demand,” Foresight Int. J. Appl. Forecast., no. 4, pp. 43–46, 2006.
K. G. Sheela and S. N. Deepa, “Analysis of computing algorithm using momentum in neural networks,” J. Comput., vol. 3, no. 6, pp. 163–166, 2011.
DOI: http://dx.doi.org/10.12962/j23546026.y2019i5.6294
Refbacks
- There are currently no refbacks.
View my Stat: Click Here
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.