Salt Fields Productivity Forecasting Based On Sunlight Duration, Wind Speed and Temperature Data

Indra Cahyadi, Heri Awalul Ilhamsah, Ika Deefi Anna

Abstract


Once a major salt producer, Indonesia has imported million tons of salt in recent years to meet domestic demands of chemical industries. Indonesia’s salt-producing potential has been hindered by lack of competitiveness and unsynchronized production data. The salt supply chain process is typically finished on a monthly basis, yet the uncertainty of weather conditions often leads to erratic production yields. Since heavy reliance on the weather can bring negative consequences for salt farmers around the country, accurate salt field productivity forecasting is of great importance. This study aims at examining sunlight duration, wind speed and temperature data to predict salt field productivity in Kalianget Sumenep Madura. The predictive model is developed using Artificial Neural Network (ANN) method because it has a low risk of fault to solve nonlinear relationships. The effects of different learning rate and momentum values are analyzed by full factorial design of experiment and evaluated based on the lowest root mean square error (RMSE). Then, the optimal model is used to test and compare the forecasting performance based on ANN and Holt-Winters predictors. The result demonstrates that the proposed model is accurate and efficient to represent a good solution to predict salt field productivity in the region

Keywords


artificial neural network; forecasting; predictive modeling; salt fields; supply chain management

Full Text:

PDF

References


A. S. Jamil, N. Tinaprilla, and S. Suharno, “Faktor-faktor yang mempengaruhi permintaan dan efektivitas kebijakan impor garam Indonesia,” Bul. Ilm. Litbang Perdagang., vol. 11, no. 1, pp. 43–68, Jul. 2017.

M. Effendy, M. Zainuri, and H. Hafiluddin, “Intenfikasi Lahan Garam Rakyat di Kabupaten Sumenep,” in Persembahan Program Studi Ilmu Kelautan untuk Maritim Madura, Madura: Universitas Trunojoyo Madura Press, 2014.

Y. Adiraga and A. H. Setiawan, “Analisis dampak perubahan curah hujan, luas tambak garam, dan jumlah petani garam terhadap produksi usaha garam rakyat di Kecamatan Juwana Kabupaten Pati (Periode 2003-2012),” Diponegoro J. Econ., vol. 3, no. 1, pp. 41–53, 2014.

I. R. Suhelmi, Garam Madura: Tradisi dan Potensi Usaha Garam Rakyat. Jakarta: Kementerian Kelautan dan Perikanan, 2013.

S. Chopra and P. Meindl, Supply Chain Management Strategy, Planning, And Operation, 5th ed. Prentice Hal, Inc, 2013.

D. Amami and I. Ihsannudin, “Efisiensi faktor-faktor produksi garam rakyat,” Media Trend, vol. 11, no. 2, pp. 166–174, Oct. 2016.

S. Herman, E. Eriyatno, E. Noor, and D. Mulyadi, “Identifikasi faktor kunci krisis pada tataniaga garam konsumsi di Indonesia menggunakan proses jejaring analitik (analytic network process),” J. Ris. Ind., vol. 8, no. 3, pp. 205–213, Dec. 2014.

A. Ihwan, “Metode Jaringan Saraf Tiruan Propagasi Balik Untuk Estimasi Curah Hujan Bulanan di Ketapang Kalimantan Barat,” in Prosiding SEMIRATA 2013, 2013, vol. 1, no. 1.

D. G. Chen and D. M. Ware, “A neural network model for forecasting fish stock recruitment,” Can. J. Fish. Aquat. Sci., vol. 56, no. 12, pp. 2385–2396, Dec. 1999.

A. S. Weigend, B. A. Huberman, and D. E. Rumelhart, “Predicting Sunspots and Exchange Rates with Connectionist Networks,” in Nonlinear modeling and forecasting, 1992.

S. Nissen, “Implementation of a fast artificial neural network library (FANN),” 2003.

H. Demuth and M. Beale, Neural Network Toolbox, for Use with MATLAB, User’S Guide Version 3.0. Natick, Massachusetts: The MathWorks, Inc., 1993.

C. Igel and M. Hüsken, “Empirical evaluation of the improved Rprop learning algorithms,” Neurocomputing, vol. 50, pp. 105–123, Jan. 2003.

J. Heaton, Introduction to Neural Networks with Java, 2. ed., 1. print. St. Louis: Heaton Research, 2008.

T. Masters, Practical Neural Network Recipes in C++. Boston: Morgan Kaufmann, 1993.

L.-F. Hsieh, S.-C. Hsieh, and P.-H. Tai, “Enhanced stock price variation prediction via DOE and BPNN-based optimization,” Expert Syst. Appl., vol. 38, no. 11, pp. 14178–14184, Oct. 2011.

R. J. Hyndman, “Another look at forecast-accuracy metrics for intermittent demand,” Foresight Int. J. Appl. Forecast., no. 4, pp. 43–46, 2006.

K. G. Sheela and S. N. Deepa, “Analysis of computing algorithm using momentum in neural networks,” J. Comput., vol. 3, no. 6, pp. 163–166, 2011.




DOI: http://dx.doi.org/10.12962/j23546026.y2019i5.6294

Refbacks

  • There are currently no refbacks.


View my Stat: Click Here

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.