Nested Generalized Linear Model with Ordinal Response for Correlated Data

Yekti Widyaningsih, Asep Saefuddin, Khairil A. Notodiputro, Aji H. Wigena

Abstract


In this paper, we discuss the generalized linear models with ordinal response for correlated data in nested area. Some basic concepts are described, that is nested spatial, threshold model, and cumulative link function. Due to correlated data used for this modeling, Generalized Estimating Eequation (GEE) is used as model parameters estimation method. Nested is shown by the model building and its application on nested spatially data. In this method, some Working Correlation Matrices (WCM) are able to be specified depend on the nature and type of the data. In this study, 3 types of WCM and 2 types of parameters estimation covariance are used to see the results of parameters estimation from these combinations. As a conclusion, independent WCM is appropriate to the data.

Keywords


Nested Generalized Linear Model; Ordinal Response; Working Correlation Matrix; Correlated

Full Text:

PDF

References


Y. Widyaningsih, A. Saefuddin, K.A. Notodiputro, “Generalized Linear Mixed Models with Ordinal Response for Clustered Nested Data”. Dissertation. Bogor Agricultural University, Indonesia, 2012.

S. Rahardjo, Peradaban Jawa (Dari Mataram Kuno sampai Majapahit Akhir), Penerbit: Komunitas Bambu, 2011.

N.A.C. Cressie, Statistics for Spatial Data, New York: John Wiley and Sons Inc, 1993.

O. Schabenberger and C.A. Gotway, Statistical Method for Spatial Data Analysis, Washington DC: Chapman & Hall, 2005.

J.W. Hardin and J.M. Hilbe, Generalized Estimating Equations (GEE), Washington DC: Chapman & Hall/CRC, 2003.

K.Y. Liang and S.L. Zeger, Longitudinal data analysis using generalized linear models, Biometrika. 73. 1. pp. 13-22, 1986.

U. Halekoh, “Generalized Estimating Equations (GEE)” [geelecture.tex. April 10] Unit of Statistics and Decision Analysis, Faculty of Agricultural Sciences, University of Aarhus. 2008, [Online]. Available: http://gbi.agrsci.dk/statistics/courses/Rcourses/RcourseDJF2008/ [26 Februari 2011, 14:48]

Badan Pusat Statistik, “Profil Kemiskinan di Indonesia”. Berita Resmi Statistik. Num. 45/Th.XIV, 1 July 2011

S.L. Zeger and K.Y. Liang, “Longitudinal data analysis for discrete and continuous outcomes”, Biometrics. Vol.42. pp. 121-130, 1986.

C.E. McCulloch and S.R.Searle, Generalized, Linear, and Mixed Models, Wiley and Sons, 2001.

A.S. Alisjahbana, “Pertumbuhan ekonomi, penyerapan tenaga kerja, kesenjangan dan penanggulangan kemiskinan”. Dokumen Bappenas, 2011.

D. Hedeker and R.D. Gibbons, “A random-effects Ordinal Model for Multilevel Analysis”, Biometrics, Vol.50, 4, pp. 933 944, 1994.

D.A. Harville and R.W. Mee, “A Mixed-Model procedure for analyzing ordered categorical data”, Biometrics, Vol.40, pp. 393–408, 1984.

W. Simpson, “Ordinal and Multinomial Models”. Research Computing Services, 2008. [Online]. Available: http://intranet.hbs.edu/dept/research/statistics/[5 August2010]

G. Rodriguez, Models for Ordinal Response Data”, lecture notes, [Online]. Available : http://data.princeton.edu/wws509/[November 15, 11].

P. McCullagh and J. Nelder, Generalized Linear Models, Second Edition. Boca Raton: Chapman and Hall/CRC. ISBN 0 412-31760-5, 1989.

J.A. Nelder and R.W.M. Wedderburn, “Generalized Linear Models”. Journal of the Royal Statistical Society Series A, 135, 370–384, 1972.

T. Zhang and G. Lin, “Cluster Detection Based on Spatial Associations and Iterated Residuals in Generalized Linear Mixed Models”. The International Biometric Society, DOI: 10.1111/j.1541-0420.2008.01069.x, 2008.

IBM SPSS Statistics 20 Algorithms. [Online]. Available: ftp://public.dhe.ibm.com/software/analytics/spss/documentation/statistics/20.0/en/client/Manuals/IBM_SPSS_Statistics_Algorithms.pdf [April 3, 2012]

N.J. Horton and S.R. Lipsitz, “Review of Software to Fit Generalized Estimating Equation Regression Models”, The American Statistical Association, Vol. 53, May 1999.

N. Koper and M. Manseau, “Generalized estimating equations and generalized linear mixed-effects models for modelling resource selection”, Journal of Applied Ecology, Vol. 46, 590–599. doi: 10.1111/j.1365-2664.2009.01642.x. 2009.

S. Rahardjo, Peradaban Jawa (Dari Mataram Kuno sampai Majapahit Akhir), Penerbit: Komunitas Bambu, 2011.




DOI: http://dx.doi.org/10.12962/j20882033.v23i2.12

Refbacks

  • There are currently no refbacks.


Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.