Patient Segmentation Based On Customer Lifetime Value Analysis Using Recency, Frequency, Monetary And Interpurchase Time Models,
Abstract
Keywords
Full Text:
Full TextReferences
Benabdellah AC, Benghabrit A, Bouhaddou I. A survey of clustering algorithms for an industrial context. Procedia Computer Science 2019;148:291–302. http://dx.doi.org/10.1016/j.procs.2019.01.022.
Aditama TY. Hospital Administration Management. UI Press Jakarta 2004
Utama A G dST S Nair R K. Influences of Advertisement on Buying Behaviour. Finance in Asia Pasific 2021;10:100–110. https://api.semanticscholar.org/CorpusID:169600687.
Elrod C, Stanley S, Cudney E, Fisher C. Empirical Study Utilizing QFD to Develop an International Marketing Strategy. Sustainability 2015;7(8):10756–10769. http://dx.doi.org/10.3390/su70810756.
Patro SGK, Sahu KK. Normalization: A Preprocessing Stage. International Advanced Research Journal in Science Engineering and Technology 2015;2(3):20. http://www.iarjset.com/upload/2015/march-15/IARJSET%205.pdf.
Greenberg P. CRM at the speed of light: Capturing and keeping customers in Internet real time. Journal of Service Research 2001;9(3):139–150.
Hiziroglu A, Sengul S. Investigating Two Customer Lifetime Value Models from Segmentation Perspective. Procedia Social and Behavioral Sciences 2012 10;62:766–774. http://dx.doi.org/10.1016/j.sbspro.2012.09.129.
Junaedi H, Budianto H, Maryati I, Melani Y. Data Transformation Pada Data Mining. Ideatech 2011;p. 93–99.
Hu YH, Yeh TW. Discovering valuable frequent patterns based on RFM analysis without customer identification information. Knowledge Based Systems 2014 5;61:76–88. http://dx.doi.org/10.1016/j.knosys.2014.02.009.
Karima FA, Shiddiqi AM. Optimization of Access Point Positioning on Wi-Fi Networks Using the K-Means Clustering Method. IPTEK The Journal for Technology and Science 2022 5;33(1):13. http://dx.doi.org/10.12962/j20882033.v33i1.12402.
Fader PS, Hardie BGS, Lee KL. RFM and CLV: Using Iso-Value Curves for Customer Base Analysis. Journal of Marketing Research 2005 11;42(4):415–430. http://dx.doi.org/10.1509/jmkr.2005.42.4.415.
Malav A, Kadam K, Kamat P. Prediction of Heart Disease Using K-Means and Artificial Neural Network as Hybrid Approach to Improve Accuracy. International Journal of Engineering and Technology 2017 8;9(4):3081–3085. http://dx.doi.org/10.21817/ijet/2017/v9i4/170904101.
Anitha P, Patil MM. RFM model for customer purchase behavior usingK-Means algorithm. Journal of King SaudUniversity Computer and Information Sciences 2022;34(5):1785–1792. http://dx.doi.org/10.1016/j.jksuci.2019.12.011.
Tukel OI, Dixit A. Application of customer lifetime value model in make-to-order manufacturing. Journal of Business amp and Industrial Marketing 2013 7;28(6):468–474. http://dx.doi.org/10.1108/jbim-04-2013-0099.
Gupta S, Hanssens D, Hardie B, Kahn W, Kumar V, Lin N, et al. Modeling Customer Lifetime Value. Journal of Service Research 2006 11;9(2):139–155. http://dx.doi.org/10.1177/1094670506293810.
Chang HC, Tsai HP. Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications 2011;38(12):14570–14580.
Chang HC, Tsai HP. Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications 2011;38(12):14499–14513. http://dx.doi.org/10.1016/j.eswa.2011.05.034.
Rungruang C, Riyapan P, Intarasit A, Chuarkham K, Muangprathub J. RFM model customer segmentation based on hierarchical approach using FCA. Expert Systems with Applications 2024 3;237:121449. http://dx.doi.org/10.1016/j.eswa.2023.121449.
Christy J, Umamakeswari A, Priyatharsini L, Neyaa A. RFM ranking – An effective approach to customer segmentation. Journal of King Saud University Computer and Information Sciences 2021;33(10):1241–1251.
Zhou J, Wei J, Xu B. Customer segmentation by web content mining. Journal of Retailing and Consumer Services 2021;61:102588. http://dx.doi.org/10.1016/j.jretconser.2021.102588.
Yeh IC, Yang KJ, Ting TM. Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications 2009;36(3):5866–5871. http://dx.doi.org/10.1016/j.eswa.2008.07.018.
Yoseph F, Heikkila M. Segmenting Retail Customers With An Enhanced RFM And A Hybrid Regression/Clustering Method. 2018 International Conference on Machine Learning and Data Engineering (iCMLDE) 2018;p. 108–116. http://dx.doi.org/10.1109/icmlde.2018.00029.
Morrison DG. Interpurchase Time and Brand Loyalty. Journal of Marketing Research 1966 8;3(3):289–291. http://dx.doi.org/10.1177/002224376600300309.
Vakratsas D, Bass FM. The relationship between purchase regularity and propensity to accelerate. Journal of Retailing 2002 6;78(2):119–129. http://dx.doi.org/10.1016/s0022-4359(02)00068-4.
Meyer-Waarden L. The influence of loyalty program membership on customer purchase behavior. European Journal of Marketing 2008;42(1/2):87–114.
Guo RS. A multi-category inter purchase time model based on hierarchical Bayesian theory. Expert Systems with Applications 2009 4;36(3):6301–6308. http://dx.doi.org/10.1016/j.eswa.2008.08.059.
Guo J, Gao Z, Liu N, Wu Y. Recommend products with consideration of multi-category inter-purchase time and price. Future Generation Computer Systems 2018 1;78:451–461. http://dx.doi.org/10.1016/j.future.2017.02.031.
Hood N, Clarke G, Clarke M. Segmenting the growing UK convenience store market for retail location planning. The International Review of Retail Distribution and Consumer Research 2015 11;26(2):113–136. http://dx.doi.org/10.1080/09593969.2015.1086403.
Khajvand M, Tarokh MJ. Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science 2011;3:1327–1332. http://dx.doi.org/10.1016/j.procs.2011.01.011.
Kong F, Liu H. Applying fuzzy analytic hierarchy process to evaluate success factors of E-commerce. International Journal of Information and Systems Sciences 2005 4;1(3-4):406––412.
Maryani I, Riana D. Clustering and profiling of customers using RFM for customer relationship management recommendations. In: The 5th International Conference on Cyber and IT Service Management (CITSM) Denpasar, Indonesia: IEEE; 2017. p. 1–6. http://dx.doi.org/10.1109/citsm.2017.8089258.
Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques. Data Mining 2006;p. 83–124. http://dx.doi.org/10.1016/b978-0-12-381479-1.00003-4.
JingW, Zhao C, Jiang C. An improvement method of DBSCAN algorithm on cloud computing. Procedia Computer Science 2019;147:596–604. http://dx.doi.org/10.1016/j.procs.2019.01.208.
Pietrzykowski M. Comparison of mini-models based on various clustering algorithms. Procedia Computer Science 2020;176:3563–3570. http://dx.doi.org/10.1016/j.procs.2020.09.030.
Wang X, Xu Y. An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series and Materials Science and Engineering 2019;569(5):52024. http://dx.doi.org/10.1088/1757-899x/569/5/052024.
Nahdliyah MA,Widiharih T, Prahutama A. Metode K-Medoids Clustering Dengan Validasi Silhouette Index dan C-Index: Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018) (K-Medoids Clustering Method Using Silhouette Index and C-Index Validation: Case Study of The Regency/City Crimes Rate in Central Java in 2018). Jurnal Gaussian 2019 5;8(2):161–170. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26640.
Metisen BM, Sari HL. Analisis Clustering Menggunakan Metode K Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila (Clustering Analysis Using the K Means Method for Grouping Product Sales in Fadhila Supermarket). Jurnal Media Infotama 2015;11(2):110–118. https://jurnal.unived.ac.id/index.php/jmi/article/view/258.
Miglautsch JR. Thoughts on RFM scoring. Journal of Database Marketing amp and Customer Strategy Management 2000 8;8(1):67–72. http://dx.doi.org/10.1057/palgrave.jdm.3240019.
Adha R, Nurhaliza N, Sholeha U, Mustakim M. Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia (Comparison of DBSCAN and K-Means Clustering Algorithms for Grouping Covid-19 Cases in the World). SITEKIN: Jurnal Sains and Teknologi & Industri 2021;18(2):206–211. https://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/12469.
Mustakim, Indah RNG, Novita R, Kharisma OB, Vebrianto R, Sanjaya S, et al. DBSCAN algorithm: Twitter text clustering of trend topic Pilkada Pekanbaru. Journal of Physics and Conference Series 2019 11;1363(1):12001. http://dx.doi.org/10.1088/1742-6596/1363/1/012001.
DOI: http://dx.doi.org/10.12962/j20882033.v35i1.20162
Refbacks
- There are currently no refbacks.
IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.