Patient Segmentation Based On Customer Lifetime Value Analysis Using Recency, Frequency, Monetary And Interpurchase Time Models,

Mohamad Shodikin, Chastine Fatichah, Nungky Taniasari

Abstract


Hospitals strategically provide quality health services to the surrounding community. One of the strategic roles is realized in inpatient and outpatient services. Based on the background above, the author examines patient segmentation based on Customer Lifetime Value analysis using the RFMT model. The research stages include calculating the RFMT score, clustering using the K-Means and DBSCAN algorithms, and patient segmentation based on CLV analysis. The dataset in this study was obtained from inpatient and outpatient visits at a hospital from January to December 2022. The research results show four segmentations of outpatients and four inpatients based on CLV values: Champions, Loyal Customers, Potential Loyalists, and Lost Customers. Inpatient segmentation includes the Champion category, 473 (2%) patients belonging to 14 clusters (15.56%). The Loyal Customer Category is 1,727 (7%) patients who are members of 31 clusters (34.44%). The Potential Loyalist category is 3,874 (16%) patients who are members of 31 clusters (34.44%). The Lost Customer Category was 18,516 (75%) patients from 14 clusters (15.56%). Outpatient segmentation includes: Champion category, 3,512 (8%) patients belonging to 10 clusters (10.10%). The Loyal Customer Category is 5,661 (13%) patients who are members of 24 clusters (24.24%). The Potential Loyalist category is 11,070 (25%) patients who are members of 34 clusters (34.34%). In the Lost Customer Category, 23,678 (54%) patients belong to 31 clusters (31.31%).

Keywords


Fuzzy AHP; CLV; Clusterization; Patient Segmentation; RFMT

Full Text:

Full Text

References


Benabdellah AC, Benghabrit A, Bouhaddou I. A survey of clustering algorithms for an industrial context. Procedia Computer Science 2019;148:291–302. http://dx.doi.org/10.1016/j.procs.2019.01.022.

Aditama TY. Hospital Administration Management. UI Press Jakarta 2004

Utama A G dST S Nair R K. Influences of Advertisement on Buying Behaviour. Finance in Asia Pasific 2021;10:100–110. https://api.semanticscholar.org/CorpusID:169600687.

Elrod C, Stanley S, Cudney E, Fisher C. Empirical Study Utilizing QFD to Develop an International Marketing Strategy. Sustainability 2015;7(8):10756–10769. http://dx.doi.org/10.3390/su70810756.

Patro SGK, Sahu KK. Normalization: A Preprocessing Stage. International Advanced Research Journal in Science Engineering and Technology 2015;2(3):20. http://www.iarjset.com/upload/2015/march-15/IARJSET%205.pdf.

Greenberg P. CRM at the speed of light: Capturing and keeping customers in Internet real time. Journal of Service Research 2001;9(3):139–150.

Hiziroglu A, Sengul S. Investigating Two Customer Lifetime Value Models from Segmentation Perspective. Procedia Social and Behavioral Sciences 2012 10;62:766–774. http://dx.doi.org/10.1016/j.sbspro.2012.09.129.

Junaedi H, Budianto H, Maryati I, Melani Y. Data Transformation Pada Data Mining. Ideatech 2011;p. 93–99.

Hu YH, Yeh TW. Discovering valuable frequent patterns based on RFM analysis without customer identification information. Knowledge Based Systems 2014 5;61:76–88. http://dx.doi.org/10.1016/j.knosys.2014.02.009.

Karima FA, Shiddiqi AM. Optimization of Access Point Positioning on Wi-Fi Networks Using the K-Means Clustering Method. IPTEK The Journal for Technology and Science 2022 5;33(1):13. http://dx.doi.org/10.12962/j20882033.v33i1.12402.

Fader PS, Hardie BGS, Lee KL. RFM and CLV: Using Iso-Value Curves for Customer Base Analysis. Journal of Marketing Research 2005 11;42(4):415–430. http://dx.doi.org/10.1509/jmkr.2005.42.4.415.

Malav A, Kadam K, Kamat P. Prediction of Heart Disease Using K-Means and Artificial Neural Network as Hybrid Approach to Improve Accuracy. International Journal of Engineering and Technology 2017 8;9(4):3081–3085. http://dx.doi.org/10.21817/ijet/2017/v9i4/170904101.

Anitha P, Patil MM. RFM model for customer purchase behavior usingK-Means algorithm. Journal of King SaudUniversity Computer and Information Sciences 2022;34(5):1785–1792. http://dx.doi.org/10.1016/j.jksuci.2019.12.011.

Tukel OI, Dixit A. Application of customer lifetime value model in make-to-order manufacturing. Journal of Business amp and Industrial Marketing 2013 7;28(6):468–474. http://dx.doi.org/10.1108/jbim-04-2013-0099.

Gupta S, Hanssens D, Hardie B, Kahn W, Kumar V, Lin N, et al. Modeling Customer Lifetime Value. Journal of Service Research 2006 11;9(2):139–155. http://dx.doi.org/10.1177/1094670506293810.

Chang HC, Tsai HP. Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications 2011;38(12):14570–14580.

Chang HC, Tsai HP. Group RFM analysis as a novel framework to discover better customer consumption behavior. Expert Systems with Applications 2011;38(12):14499–14513. http://dx.doi.org/10.1016/j.eswa.2011.05.034.

Rungruang C, Riyapan P, Intarasit A, Chuarkham K, Muangprathub J. RFM model customer segmentation based on hierarchical approach using FCA. Expert Systems with Applications 2024 3;237:121449. http://dx.doi.org/10.1016/j.eswa.2023.121449.

Christy J, Umamakeswari A, Priyatharsini L, Neyaa A. RFM ranking – An effective approach to customer segmentation. Journal of King Saud University Computer and Information Sciences 2021;33(10):1241–1251.

Zhou J, Wei J, Xu B. Customer segmentation by web content mining. Journal of Retailing and Consumer Services 2021;61:102588. http://dx.doi.org/10.1016/j.jretconser.2021.102588.

Yeh IC, Yang KJ, Ting TM. Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications 2009;36(3):5866–5871. http://dx.doi.org/10.1016/j.eswa.2008.07.018.

Yoseph F, Heikkila M. Segmenting Retail Customers With An Enhanced RFM And A Hybrid Regression/Clustering Method. 2018 International Conference on Machine Learning and Data Engineering (iCMLDE) 2018;p. 108–116. http://dx.doi.org/10.1109/icmlde.2018.00029.

Morrison DG. Interpurchase Time and Brand Loyalty. Journal of Marketing Research 1966 8;3(3):289–291. http://dx.doi.org/10.1177/002224376600300309.

Vakratsas D, Bass FM. The relationship between purchase regularity and propensity to accelerate. Journal of Retailing 2002 6;78(2):119–129. http://dx.doi.org/10.1016/s0022-4359(02)00068-4.

Meyer-Waarden L. The influence of loyalty program membership on customer purchase behavior. European Journal of Marketing 2008;42(1/2):87–114.

Guo RS. A multi-category inter purchase time model based on hierarchical Bayesian theory. Expert Systems with Applications 2009 4;36(3):6301–6308. http://dx.doi.org/10.1016/j.eswa.2008.08.059.

Guo J, Gao Z, Liu N, Wu Y. Recommend products with consideration of multi-category inter-purchase time and price. Future Generation Computer Systems 2018 1;78:451–461. http://dx.doi.org/10.1016/j.future.2017.02.031.

Hood N, Clarke G, Clarke M. Segmenting the growing UK convenience store market for retail location planning. The International Review of Retail Distribution and Consumer Research 2015 11;26(2):113–136. http://dx.doi.org/10.1080/09593969.2015.1086403.

Khajvand M, Tarokh MJ. Estimating customer future value of different customer segments based on adapted RFM model in retail banking context. Procedia Computer Science 2011;3:1327–1332. http://dx.doi.org/10.1016/j.procs.2011.01.011.

Kong F, Liu H. Applying fuzzy analytic hierarchy process to evaluate success factors of E-commerce. International Journal of Information and Systems Sciences 2005 4;1(3-4):406––412.

Maryani I, Riana D. Clustering and profiling of customers using RFM for customer relationship management recommendations. In: The 5th International Conference on Cyber and IT Service Management (CITSM) Denpasar, Indonesia: IEEE; 2017. p. 1–6. http://dx.doi.org/10.1109/citsm.2017.8089258.

Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques. Data Mining 2006;p. 83–124. http://dx.doi.org/10.1016/b978-0-12-381479-1.00003-4.

JingW, Zhao C, Jiang C. An improvement method of DBSCAN algorithm on cloud computing. Procedia Computer Science 2019;147:596–604. http://dx.doi.org/10.1016/j.procs.2019.01.208.

Pietrzykowski M. Comparison of mini-models based on various clustering algorithms. Procedia Computer Science 2020;176:3563–3570. http://dx.doi.org/10.1016/j.procs.2020.09.030.

Wang X, Xu Y. An improved index for clustering validation based on Silhouette index and Calinski-Harabasz index. IOP Conference Series and Materials Science and Engineering 2019;569(5):52024. http://dx.doi.org/10.1088/1757-899x/569/5/052024.

Nahdliyah MA,Widiharih T, Prahutama A. Metode K-Medoids Clustering Dengan Validasi Silhouette Index dan C-Index: Studi Kasus Jumlah Kriminalitas Kabupaten/Kota di Jawa Tengah Tahun 2018) (K-Medoids Clustering Method Using Silhouette Index and C-Index Validation: Case Study of The Regency/City Crimes Rate in Central Java in 2018). Jurnal Gaussian 2019 5;8(2):161–170. https://ejournal3.undip.ac.id/index.php/gaussian/article/view/26640.

Metisen BM, Sari HL. Analisis Clustering Menggunakan Metode K Means Dalam Pengelompokkan Penjualan Produk Pada Swalayan Fadhila (Clustering Analysis Using the K Means Method for Grouping Product Sales in Fadhila Supermarket). Jurnal Media Infotama 2015;11(2):110–118. https://jurnal.unived.ac.id/index.php/jmi/article/view/258.

Miglautsch JR. Thoughts on RFM scoring. Journal of Database Marketing amp and Customer Strategy Management 2000 8;8(1):67–72. http://dx.doi.org/10.1057/palgrave.jdm.3240019.

Adha R, Nurhaliza N, Sholeha U, Mustakim M. Perbandingan Algoritma DBSCAN dan K-Means Clustering untuk Pengelompokan Kasus Covid-19 di Dunia (Comparison of DBSCAN and K-Means Clustering Algorithms for Grouping Covid-19 Cases in the World). SITEKIN: Jurnal Sains and Teknologi & Industri 2021;18(2):206–211. https://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/12469.

Mustakim, Indah RNG, Novita R, Kharisma OB, Vebrianto R, Sanjaya S, et al. DBSCAN algorithm: Twitter text clustering of trend topic Pilkada Pekanbaru. Journal of Physics and Conference Series 2019 11;1363(1):12001. http://dx.doi.org/10.1088/1742-6596/1363/1/012001.




DOI: http://dx.doi.org/10.12962/j20882033.v35i1.20162

Refbacks

  • There are currently no refbacks.


Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.