Comparison Of KNN, Random Forest, And F-PSO Algorithms On Simple Feature Scaling for Agility Level Classification

Tri Yulianto Nugroho, Umi Laili Yuhana, Daniel Siahaan

Abstract


Classifying agility levels presents challenges due to variations in team members’ personalities, roles, and undesirable behaviors. This study aims to enhance classification accuracy by comparing the performance of three algorithms: K-Nearest Neighbors (KNN), Random Forest, and Fuzzy-Particle Swarm Optimization (F-PSO) in classifying agility levels using simple feature scaling as part of the data preprocessing. Simple feature scaling is employed to ensure that all parameters are on the same scale, thereby improving the model’s effectiveness in learning classification patterns. F-PSO was selected for its ability to perform adaptive global search optimization within a fuzzy environment, while KNN and Random Forest serve as benchmarks. The study involved 160 participants from various Scrum teams to evaluate the effectiveness of these algorithms. The parameters considered included team members’ personalities (based on the Keirsey model), roles within the team, and the identification of negative behavior patterns (antipatterns). The results indicated that the F-PSO algorithm significantly outperformed KNN and Random Forest in terms of accuracy, improving from an average accuracy of 25% before optimization to 93.75% after applying F-PSO. This approach enables Scrum teams to identify and address obstacles affecting agility, facilitating earlier problem prediction and resolution, leading to more adaptive and effective teams.

Keywords


Agility Level; Anti-patternAntipattern KNN; Random Forest, Scrum; Simple Feature Scaling

Full Text:

Full Text

References


Csalódi R, Süle Z, Jaskó S, Holczinger T, Abonyi J. Industry 4.0-Driven Development of Optimization Algorithms: A

Systematic Overview. Hindawi Limited 2021;p. 6621235.

Arshanty RA, Sa’adah U, Sari DIP, Rasyid MBA. Pengembangan Aplikasi People Management dalam Software Development

dengan Pendekatan Project Management Antipatterns. Jurnal Nasional Teknik Elektro dan Teknologi Informasi 2020

December;9(4):343–353.

Gilal AR, Jaafar J, Omar M, Basri S, Waqas A. A rule-based model for software development team composition: Team

leader role with personality types and gender classification. Inf Softw Technol 2016 June;74:105–113.

Eilers K, Peters C, Leimeister JM. Why the agile mindset matters. Technol Forecast Soc Change 2022 June;179.

Xie X, Wang B, Yang X. SoftRec: Multi-relationship fused software developer recommendation. Applied Sciences

(Switzerland) 2020 June;10(12):1–20.

Settas D, Meditskos G, Bassiliades N, Stamelos IG. Detecting antipatterns using a web-based collaborative antipattern

ontology knowledge base. In: Lecture Notes in Business Information Processing, Verlag Springer; 2011.p. 478–488.

Russo D, Stol KJ. Gender Differences in Personality Traits of Software Engineers. IEEE Transactions on Software

Engineering 2022 March;48(3):819–834.

Purwaningsih I, Widodo S, Harini E, Kusumaningrum B, Putrianti G, Muanifah M. Adaptation Measuring Instrument

Keyrsey Temperament Sorter. In: The 1st International Conference on Science and Technology for an Internet of Things

Yogyakarta, Indonesia; 2019. p. 1–6.

Sotarjua LM, Santoso DB, Waluyo UHSKJR, Timur KT, Karawang K, Barat J. Perbandingan Algoritma Knn, Decision

Tree,*Dan Random*Forest Pada Data Imbalanced Class Untuk Klasifikasi Promosi Karyawan (Comparison of Knn, Decision

Tree, *And Random*Forest Algorithms on Imbalanced Class Data for Employee Promotion Classification). Jurnal

INSTEK (Informatika Sains dan Teknologi) 2022;7(2).

Yilmaz M, O’Connor RV. Understanding personality differences in software organizations using Keirsey temperament

sorter. IET Software 2015;9(5):129–134.

Settas D, Stamelos I. 8. In: Lee R, editor. Resolving Complexity and Interdependence in Software Project Management

Antipatterns Using the Dependency Structure Matrix Berlin, Heidelberg: Springer Berlin Heidelberg; 2008. p. 205–217.

https://doi.org/10.1007/978-3-540-70561-1_15.

Picha P, Brada P. Software process anti-pattern detection in project data. In: ACM International Conference Proceeding

Series, Association for Computing Machinery New York, NY, USA; 2019. p. 1–12.

Zhu H, Zhou MC, Seguin P. Supporting software development with roles. IEEE Transactions on Systems, Man, and

Cybernetics Part A:Systems and Humans 2006 November;36(6):1110–1123.

Ahmed F, Capretz LF, Bouktif S, Campbell P. Soft skills and software development: A reflection from software industry.

International Journal of Information Processing and Management 2013;4(3):171–191.

Akarsu Z, Orgun P, Dinc H, Gunyel B, Yilmaz M. Assessing Personality Traits in a Large Scale Software Development

Company: Exploratory Industrial Case Study. In: Systems, Software and Services Process Improvement Cham: Springer

International Publishing; 2019. p. 192–206.

Neill CJ. Antipatterns in Systems Engineering: An Opening Trio. INCOSE International Symposium 2012;22(1):1233–

Gilal R, Omar M, Gilal AR, Rejab MM, Waqas A, Sharif KIM. Can time pressure and personality make any sense

together in software engineering? International Journal of Innovative Technology and Exploring Engineering 2019

November;9(1):1071–1075.

Lima ACES, Castro LND. Tecla: A temperament and psychological type prediction framework from Twitter data. PLoS

One 2019 March;14(3).

Putra N, Saputra ID. Metode Fuzzy untuk Mengidentifikasi Kepribadian Siswa. Jurnal Sistim Informasi dan Teknologi

September;p. 136–142.

Trujillo-Dalbey F. Managing intercultural conflict effectively: Stella Ting-Toomey and John G. Oetzel, Sage Publications,

Thousand Oaks, CA, 2001, 233 pages. International Journal of Intercultural Relations 2002;26(3):334–337. https://www.

sciencedirect.com/science/article/pii/S0147176702000093.

Dorigo M, Gambardella LM. Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE

Transactions on Evolutionary Computation 1997;1(1):53–66.

Arcelli D, Cortellessa V, Trubiani C. Performance-based software model refactoring in fuzzy contexts. In: Lecture Notes

in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics),

Verlag Springer; 2015.p. 149–164.

R Chi Y. xin Su. D hong Zhang, X xin Chi, and H jun Zhang, “A hybridization of cuckoo search and particle swarm

optimization for solving optimization problems, ” Neural Comput Appl 2019 January;31:653–670.

Putra I. Optimasi Proses Etl Dengan Metode Heuristik Untuk Membangun Data Warehouse (ETL Process Optimization

Using Heuristic Methods to Build a Data Warehouse). JST (Jurnal Sains dan Teknologi) 2019 July;8:35.

Mamur H, ÜstünerMA, BhuiyanMRA. Future perspective and current situation of maximum power point tracking methods

in thermoelectric generators. Sustainable Energy Technologies and Assessments 2022;50:101824.

Hidalgo ES. Adapting the scrum framework for agile project management in science: case study of a distributed research

initiative. Heliyon 2019 3;5:1–31.

Hazzan O, Dubinsky Y. The Agile Manifesto. Cham: Springer International Publishing; 2014. https://doi.org/10.1007/

-3-319-10157-6_3.

Wang K. Computational Intelligence in Agile Manufacturing Engineering. pp 2001;p. 297–315.

Hill GM. The complete project management office handbook. 2 ed. New York, USA: Auerbach Publications; 2004.

Kazançoğlu Y, Sağnak M. Integrated Fuzzy Analytic Network Process And 0-1 Goal Programming Technique For

Enterprise Resource Planning (Erp) Software Selection. Ege Akademik Bakis (Ege Academic Review) 2019 January;19(1).

Vaishnavi V, Suresh M. Assessing the Readiness Level of Healthcare for Implementing Agility Using Fuzzy Logic

Approach. Global Journal of Flexible Systems Management 2020 June;21(2):163–189.

Kakar A. A Rhetorical Analysis of the Agile Manifesto on its 20th Anniversary. Journal of the Southern Association for

Information Systems 2023 February;10(1):20–29.

Alsalibi B, Mirjalili S, L Abualigah R. I. yahya, and A. “A Comprehensive Survey on the Recent Variants and Applications

of Membrane-Inspired Evolutionary Algorithms, ” Aug. 01, Springer Science and Business Media B. V: H. Gandomi; 2022.




DOI: http://dx.doi.org/10.12962%2Fj20882033.v35i3.21992

Refbacks

  • There are currently no refbacks.


sja138

Creative Commons License

IPTEK Journal of Science and Technology by Lembaga Penelitian dan Pengabdian kepada Masyarakat, ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/jts.