DETERMINATION OF SECONDARY METABOLITE CONTENT, TOTAL PHENOLIC ANTIOXIDANT TEST, AND TOXICITY OF ULIN LEAF EXTRACT (Eusideroxylon zwageri Teijsm. & Binn)
Abstract
Ulin leaf (Eusideroxylon zwageri Teijsm. & Binn) is one of the traditional Indonesian medicinal plants. In this research, the secondary metabolite content, antioxidant activity, cytotoxic and total phenolic content were tested. The extraction process by maceration starts from hexane, ethyl acetate and methanol. The content of secondary metabolites of ironwood leaves are flavonoids, phenolics, steroids, terpenoids, and alkaloids. The results of the antioxidant activity test using the DPPH method (1,1-Diphenyl-2-Picrylhydrazil), methanol extract showed very strong activity IC50 10.96 mg/L, moderate ethyl acetate extract 115,409 mg/L and weak hexane extract IC50 368,555 mg/L. L. This result correlated with the total phenolic yield, methanol extract had the highest value of 162.95 mg GAE/Gram, followed by ethyl acetate extract of 96.7 mg GAE/Gram and hexane with a value of 19.85 mg GAE/Gram. The results of the cytotoxic test using the (BSLT) method on hexane extract had very strong toxicity LC50 82.1675 mg/L, methanol extract and weak ethyl acetate LC50, respectively; 683,282; and 812.456 mg/L.
Key word : Ulin, Antioxidants, Total Phenolic, cytotoxic
Keywords
Full Text:
PDFReferences
R. Batool, M. R. Khan, M. Sajid, S. Ali, and Z. Zahra, “Estimation of phytochemical constituents and in vitro antioxidant potencies of Brachychiton populneus (Schott & Endl.) R.Br.,” BMC Chem., vol. 13, no. 3, pp. 1–15, 2019, doi: 10.1186/s13065-019-0549-z.
M. Narayanan et al., “Optimization and production of polyhydroxybutyrate from sludge by Bacillus cereus categorized through FT-IR and NMR analyses,” J. Environ. Chem. Eng., vol. 9, no. 1, p. 104908, 2021, doi: 10.1016/j.jece.2020.104908.
S. Venkatesan et al., “In-situ and ex-situ Phycoremediation Competence of Innate Scenedesmus sp . on Polluted Thirumanimuthar River Water,” vol. 9, no. 35, pp. 839–852, 2020, doi: 10.37273/chesci.CS205111242.
A. Phaniendra, D. B. Jestadi, and L. Periyasamy, “Free Radicals: Properties, Sources, Targets, and Their Implication in Various Diseases,” Indian J. Clin. Biochem., vol. 30, no. 1, pp. 11–26, 2015, doi: 10.1007/s12291-014-0446-0.
A. Mandic, S. Djilas, J. Canadanovic-Brunet, G. Cetkovic, and J. Vulic, “Antioxidant activity of white grape seed extracts on DPPH radicals,” Acta Period. Technol., no. 40, pp. 53–61, 2009, doi: 10.2298/apt0940053m.
M. Narayanan et al., “Production and characterization of polyhydroxyalkanoates synthesized by E. Coli Isolated from sludge soil,” Mater. Today Proc., vol. 33, pp. 3646–3653, 2020, doi: 10.1016/j.matpr.2020.05.725.
D. MF, “Cigarette Smoke Causes Changes in Liver and Spleen of Mice Newborn Exposed During Pregnancy,” J. Cytol. Histol., vol. 04, no. 01, pp. 3–8, 2013, doi: 10.4172/2157-7099.1000168.
J. Akter, M. A. Hossain, K. Takara, M. Z. Islam, and D. X. Hou, “Antioxidant activity of different species and varieties of turmeric (Curcuma spp): Isolation of active compounds,” Comp. Biochem. Physiol. Part - C Toxicol. Pharmacol., vol. 215, no. September 2018, pp. 9–17, 2019, doi: 10.1016/j.cbpc.2018.09.002.
H. Sung et al., “Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries,” CA. Cancer J. Clin., vol. 71, no. 3, pp. 209–249, 2021, doi: 10.3322/caac.21660.
D. Shasha, “Reversed Phase HPLC-UV Quantitation of BHA, BHT and TBHQ in Food Items Sold in Bindura Supermarkets, Zimbabwe,” Int. Res. J. Pure Appl. Chem., vol. 4, no. 5, pp. 578–584, 2014, doi: 10.9734/irjpac/2014/10419.
H. GRICE, “Safety evaluation of butylated hydroxyltoluene (BHT) in the liver, lung and gastrointestinal tract,” Food Chem Toxicol, vol. 24, pp. 1127–1130, 1986, Accessed: Jun. 09, 2022. [Online]. Available: https://cir.nii.ac.jp/crid/1570291225703941120.bib?lang=en.
H. Niksic et al., “Cytotoxicity screening of Thymus vulgaris L. essential oil in brine shrimp nauplii and cancer cell lines,” Sci. Rep., vol. 11, no. 1, pp. 1–9, 2021, doi: 10.1038/s41598-021-92679-x.
D. Thi Phuong Lien, “Effects of Extraction Process on Phenolic Content and Antioxidant Activity of Soybean,” J. Food Nutr. Sci., vol. 3, no. 1, p. 33, 2015, doi: 10.11648/j.jfns.s.2015030102.16.
N. R. Farnsworth, O. Akerele, A. S. Bingel, D. D. Soejarto, and Z. Guo, “Medicinal plants in therapy,” Bull. World Health Organ., vol. 63, no. 6, pp. 965–981, 1985, doi: 10.1016/0378-8741(87)90016-x.
L. R. A. Al-Mqbali and M. A. Hossain, “Cytotoxic and antimicrobial potential of different varieties of ripe banana used traditionally to treat ulcers,” Toxicol. Reports, vol. 6, no. September, pp. 1086–1090, 2019, doi: 10.1016/j.toxrep.2019.10.003.
K. Herawan Timotius and I. Rahayu, “Qualitative Analysis of Eusideroxylon Zwageri Teijsm and Binn Seed By Gc-Ms and Lc-Ms,” Int. J. Adv. Res., vol. 8, no. 5, pp. 878–884, 2020, doi: 10.21474/ijar01/10998.
Y. Mariani, F. Yusro, and E. Wardenaar, “Aktivitas Ekstrak Metanol Daun Ulin (Eusideroxylon Zwageri Teijsm & Binn) Terhadap Empat Jenis Bakteri Patogen,” J. Biol. Trop., vol. 20, no. 1, p. 94, 2020, doi: 10.29303/jbt.v20i1.1642.
I. W. Kusuma, Rahmini, R. Ramadhan, N. Rahmawati, R. A. Suwasono, and N. M. Sari, “Phytochemicals and Antidiabetic Activity of Eusideroxylon zwageri Stem Bark Collected from East Kalimantan, Indonesia,” IOP Conf. Ser. Earth Environ. Sci., vol. 144, no. 1, pp. 1–8, 2018, doi: 10.1088/1755-1315/144/1/012030.
A. Ajizah, T. Thihana, and M. Mirhanuddin, “Potensi Ekstrak Kayu Ulin (Euksideroxylon zwageri ) dalam Menghambat Pertumbuhan Bakteri Staphylococcus aureus Secara in Vitro,” Bioscientiae, vol. 4, no. 1, pp. 37–42, 2007.
H. Wila, F. Yusro, and Y. Mariani, “Skrining Fitokimia Dan Aktivitas Antibakteri Ekstrak Kulit Batang (Eusideroxylon zwageri) terhadap Escherichia Coli dan Salmonella Typhi,” vol. 8, pp. 38–49, 2018.
H. Darussalam, “UJI SENSITIVITAS EKSTRAK KAYU ULIN (Eusideroxylon zwageri tet b) TERHADAP PERTUMBUHAN BAKTERI Staphylococcus aureus SECARA IN VITRO,” Mahakam Med. Lab. Technol. J., vol. 1, no. 2, pp. 21–30, 2017, [Online]. Available: http://ejournalanalis.poltekkes-kaltim.ac.id/ojs/index.php/Analis/article/view/6.
A. Itam, A. Wulandari, M. M. Rahman, and N. Ferdinal, “Preliminary phytochemical screening, total phenolic content, antioxidant and cytotoxic activities of Alstonia scholaris R. Br leaves and stem bark extracts,” J. Pharm. Sci. Res., vol. 10, no. 3, pp. 518–522, 2018.
A. M. Abdulsattar and M. A. Hossain, “Antibacterial and antioxidant potential of Tetraena simplex extracts of various polarities,” Toxicol. Reports, vol. 7, no. July, pp. 925–929, 2020, doi: 10.1016/j.toxrep.2020.07.014.
A. Bujor et al., “Metabolite profiling, arginase inhibition and vasorelaxant activity of Cornus mas, Sorbus aucuparia and Viburnum opulus fruit extracts,” Food Chem. Toxicol., vol. 133, no. May, p. 110764, 2019, doi: 10.1016/j.fct.2019.110764.
M. Z. Alam, M. S. R. Alhebsi, S. Ghnimi, and A. Kamal-Eldin, “Inability of total antioxidant activity assays to accurately assess the phenolic compounds of date palm fruit (Phoenix dactylifera L.),” NFS J., vol. 22, no. December 2020, pp. 32–40, 2021, doi: 10.1016/j.nfs.2021.01.001.
A. K. Jha and N. Sit, “Extraction of bioactive compounds from plant materials using combination of various novel methods: A review,” Trends Food Sci. Technol., vol. 119, no. November 2021, pp. 579–591, 2022, doi: 10.1016/j.tifs.2021.11.019.
Molyneux P, “The Use of The Stable Free Radical Diphenylpicryl-Hydrazyl (DPPH) for Estimating Anti-oxidant Activity,” Songklanakarin J. Sci. Technol., vol. 26, no. May, pp. 211–219, 2004.
M. Olszowy, “What is responsible for antioxidant properties of polyphenolic compounds from plants?,” Plant Physiol. Biochem., vol. 144, no. September, pp. 135–143, 2019, doi: 10.1016/j.plaphy.2019.09.039.
A. A. El-Gamal et al., “Prenylated flavonoids from Commiphora opobalsamum stem bark,” Phytochemistry, vol. 141, pp. 80–85, 2017, doi: 10.1016/j.phytochem.2017.05.014.
B. N. Meyer, N. R. Ferrigni, J. E. Putnam, L. B. Jacobsen, D. E. Nichols, and J. L. McLaughlin, “Brine shrimp: A convenient general bioassay for active plant constituents,” Planta Med., vol. 45, no. 1, pp. 31–34, 1982, doi: 10.1055/s-2007-971236.
C. Clarkson et al., “In vitro antiplasmodial activity of medicinal plants native to or naturalised in South Africa,” J. Ethnopharmacol., vol. 92, no. 2–3, pp. 177–191, 2004, doi: 10.1016/j.jep.2004.02.011.
E. Setiawati, S. Bahri, and A. R. Razak, “EKSTRAKSI GLUKOMANAN DARI UMBI PORANG (Amorphophallus paeniifolius (Dennst.) Nicolson),” Kovalen, vol. 3, no. 3, p. 234, 2017, doi: 10.22487/j24775398.2017.v3.i3.9332.
S. Geethaa, P. J. Thavamany, S. P. Chiew, and O. M. Thong, “Interference from ordinarily used solvents in the outcomes of Artemia salina lethality test,” J. Adv. Pharm. Technol. Res., vol. 4, no. 4, pp. 179–182, 2013, doi: 10.4103/2231-4040.121411.
S. Sen, B. De, N. Devanna, and R. Chakraborty, “Total phenolic, total flavonoid content, and antioxidant capacity of the leaves of Meyna spinosa Roxb., an Indian medicinal plant,” Chin. J. Nat. Med., vol. 11, no. 2, pp. 149–157, 2013, doi: 10.1016/S1875-5364(13)60042-4.
C. M. Nyein, K. M. Mya, M. Thida, and K. N. Chan, “Detection of antioxidant and cytotoxic activites of Tectona hamiltoniana and Terminalia chebula,” J. Pharm. Sci. Res., vol. 9, no. 10, pp. 1750–1754, 2017.
DOI: http://dx.doi.org/10.12962/j25493736.v7i2.14346
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.