Potensi Senyawa Hidrazon berbasis Turunan 2-Tiohidantoin dan Hidrazida sebagai Inhibitor Protein E6 pada Kanker Serviks secara In Silico

Yusuf Syahril Alam, Syafri Izzat Abidiy, Triyanda Gunawan, Adi Setyo Purnomo, Arif Fadlan, Fahimah Martak

Abstract


Setiap tahun, prevalensi penyakit kanker leher rahim di dunia semakin meningkat. Kanker serviks dapat terjadi akibat infeksi Human Papillomavirus (HPV). Saat ini, penargetan penghambatan onkoprotein E6 cenderung dipilih karena lebih aman dan lebih baik sebagai agen terapeutik kanker serviks. Selain itu, E6 juga termasuk virus krusial yang menginduksi kanker serviks melalui inaktivasi protein p53 sehingga diperlukan material yang efektif untuk menghambat kinerja onkogen E6. Hidrazon merupakan senyawa basa Schiff yang memiliki gugus azometin (-NHN=CR-). Gugus azometin inilah yang berperan dalam berbagai bioaktivitas, termasuk antivirus dan antikanker. Pada penelitian ini, hidrazon berasal dari turunan 2-tiohidantoin dan hidrazida. Senyawa 2-tiohidantoin termasuk kelompok heterosiklik yang memainkan peran penting dalam kimia obat seperti antikonvulsan, antibakteri, antidiabetik, antivirus dan antikanker. Dengan demikian, senyawa ini dapat menjadi agen alternatif pengobatan kanker serviks. Sebelum dilakukan sintesis material tersebut, perlu dilakukan analisis bioaktivitas menggunakan komputasi. Kajian metode in-silico meliputi pembuatan struktur menggunakan Avogadro, optimasi geometri molekul menggunakan Gaussian 16, serta hasil interaksi ligan-protein (RMSD, KI, Binding Affinity, ADME, Binding Pocket, dan Drugability score) menggunakan Autodock Tools, LigPlot, SwissADME, PLIP Tools, dan Protein Plus. Hasil penelitian menunjukkan bahwa senyawa hidrazon yang berasal dari turunan 2-tiohidantoin dan hidrazida berpotensi menghambat protein E6 dan dapat digunakan sebagai obat oral.


Keywords


Kanker; Human Papillomavirus; Hidrazon; 2-Tiohidantoin

Full Text:

PDF

References


X. Zhang, Q. Zeng, W. Cai, and Ruan, “Trends of cervical cancer at global, regional, and national level: data from the global burden of disease study 2019,” BMC Public Health vol. 21, pp. 894-903, 2021.

R. L. Siegel, K. D. Miller, H. E. Fuchs, and A. Jemal, “Cancer statistics, 2021,” CA: Cancer J. Clin. vol. 71, pp. 7-33, 2021.

F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, and A. Jemal, “Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancer in 185 countries,” CA: Cancer J. Clin. vol. 68, pp. 394-424, 2018.

M. Wahidin, R. Febrianti, and F. Susanty, “Burden of cervical cancer in Indonesia: findings from the global burden of disease study 1990-2017,” Adv. Health Sci. Res. vol. 22, pp. 213-217, 2019.

H. Nagai, and Y. H. Kim, “Cancer prevention from the perspective of global cancer burden patterns,” J. Thorac. Dis. vol. 9, pp. 448-451, 2017

D. Patra, S. Paul, I. Majumder, and N. Sepay, “Exploring the effect of substituent in the hydrazone ligand of a family of µ-oxidodivanadium(V) hydrazone complexes on structure, DNA binding and anticancer activity,” Dalton Transaction vol. 46, pp. 16276-16293, 2017.

S. Zhang, H. Xu, L. Zhang, and Y. Qiao, “Cervical cancer: epidemiology, risk factors and screening,” Chin. J. Cancer Res. vol. 32, pp. 720-728, 2020.

L. Bruni, A. Saura-Lázaro, A. Montoliu, M. Brotons, L. Alemany, M. S. Diallo, O. Z. Afsar, D. S. LaMontagne, L. Mosina, M. Contreras, M. Velandia-González, R. Pastore, M. Gacic-Dobo, and P. Bloem, “HPV vaccination introductiom worldwide and WHO and UNICEF estimates of national HPV immunization coverage 2010-2019,” Prev. Med. vol. 144, pp. 106399-106410, 2021.

E. M. de Villiers, “Cross-roads in the classification of papillomaviruses,” Virology vol. 445, pp. 2-10, 2013.

B. Serrano, M. Brotons, F. X. Bosch, and L. Bruni, “Epidemiology and burden of HPV-related disease,” Best Practice Res. Clin. Obstretrics Gynaecology vol. 47, pp. 14-26, 2018.

A. Y. Hassan, S. A. El-Sebaey, M. A. El-Deeb, and M. S. Elzoghbi, “Potential antiviral and anticancer effect of imidazoles and bridgehead imidazoles generated by HPV-induced cervical carcinomas via reactivating the P53/pRb pathway and inhibition of CA IX,” J. Mol. Struct. vol. 1230, pp. 129865-13003, 2021.

S. A. Aly and S. K. Fathalla, “Preparation, characterization of some transition metal complexes of hydrazone derivatives and their antibacterial and antioxidant activities,” Arabian J. Chem. vol. 13, pp. 3735-3750, 2020.

M. R. Ali, A. Marella, M. T. Alam, R. Naz, M. Akhter, M. Shaquiquzzaman, R. Saha, O. Tanwar, M. M. Alam, and J. Hooda, “Review of biological activities of hydrazones,” Indonesian J. Pharm. vol. 23, pp. 193-202, 2012.

N. Singh, R. Ranjana, M. Kumari, and B. Kumar, “A review on biological activities of hydrazone derivatives,” Int. J. Pharm. Clin. Res. vol. 8, pp. 162-166, 2016.

S. H. Alotabi, “Synthesis, characterization, anticancer activity, and molecular docking of some new sugar hydrazone and arylidene derivatives,”. Arabian J. Chem. vol. 13, pp. 4771-4784, 2020.

H. A. Arjun, R. Elancheran, N. Manikandan, K. Lakshmithendral, M. Ramanathan, A. Bhattacharjee, N. K. lokanath, and S. Kabilan, "Design, synthesis, and biological evaluation of (E)-N’-((1-chloro-3,4-dihydronaphthalen-2- yl)methylene)benzohydrazide derivatives as anti-prostate cancer agent,” Front. Chem. vol. 7, pp. 1-14, 2019.

G. Xu, M. C. Abad, P. J. Connolly, M. P. Neeper, G. T. Struble, B. A. Springer, S. L. Emanuel, N. Pandey, R. H. Gruninger, M. Adams, S. Moreno-Mazza, A. R. Fuentes-Pesquera, and S. A. Middleton, “4-amino-6-arylamino-pyrimidine-5-carbaldehyde hydrazones as potent ErbB-2/EGFR dual kinase inhibitors,” Bioor. Med. Chem. Lett. vol. 18, pp. 4615-4619, 2008.

G. Verma, A. Marella, M. Shaquiquzzaman, M. Akhtar, M. R. Ali, and M. M. Alam, “A review exploring biological activities of hydrazones,” J. Pharm. Bioallied Sci. vol. 6, pp 69-80, 2014.

S. H. Cheng, W. N. Liao, L. M. Chen, and C. H. Lee, “pH-controllable release using functionalized mesoporous silica nanoparticles as an oral drug delivery system,” J. Mater. Chem. vol. 21, pp. 7130-7137, 2011.

K. Y. Win and S. S. Feng, “Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs,” Biomaterials vol. 26, pp. 2713-2722, 2005.

M. Zuo, X. Xu, Z. Xie, R. Ge, Z. Zhang, Z. Li, and J. Brian, “Design and synthesis of indoline thiohydantoin derivatives based on enzalutamide as antiproliferative agents against prostate cancer,” Euro. J. Med. Chem. vol. 125, pp. 1002-1022, 2017.

H. A. Elhady, R. El-Sayed, and H. S. Al-Nathali, “Design, synthesis, and evaluation of anticancer activity of novel 2-thioxoimidazolidin-4-one derivatives bear-ing pyrazole, triazole and benzoxazole moietis,” Chem. Central J. vol. 12, pp. 51-63, 2018.

J. L. Romine, D. R. S. Laurent, J. E. Leet, S. W. Martin, M. H. Serrano-Wu, F. Yang, M. Cao, D. O’Boyle, J. Lemm, J. Sun, P. Nower, X. Huang, M. Deshpande, N. Meanwell, and L. B. Snyder, “Inhibitors of HCV NS5A: from iminothiazolidinones to symmetricalstilbenes,” ACS Med. Chem. Lett. vol. 2, pp. 224-229, 2011.

D. H. Mahajan, K. H. Chikhalia, C. Pannecouque, and E. D. Clereq, “Synthesis and anti-HIV evaluation of new 2-thioxoimidazolidin-4-ones and their arylidine (styryl) derivatives,” Pharm. Chem. J. vol. 46, pp. 165-170, 2012.

A. R. Jogdand, L. L. Kathane, N. G. Kuhite, C. D. Padole, M. D. Amdare, and D. K. Mahapatra, “Fabrication hydantoin / thiohydantoin hybrids from a natural product, cuminaldehyde: new players for anti-convulsant therapeutics,” Sch. Aca. J. Pharm. vol. 6, pp. 300-303, 2017.

S. A. Abubshait, “Synthesis, antimicrobial and anticancer activities of some 2-thiohydantoin derivatives,” Indian J. Chem. vol. 56B, pp. 641-648, 2017.

J, Thanusu, V. Kanagarajan, and M. Gopalakrishnan, “Synthesis, spectral analysis, and in vitro microbiological evaluation of 3-(3-alkyl-2,6-diarylpiperin-4-ylidene)-2- thioxoimidazolidin-4-ones as a new class of antibacterial and antifungal agents,” Bioorg. Med. Chem. Lett. vol. 20, pp. 713-717, 2010.

T. H. Lee, Z. Khan, S. Y. Kim, and K. R. Lee, “Thiohydantoin and hydantoin derivatives from the roots of amoracia rusticana and their neurotrophic and antineuroinflammatory activities,” J. Nat. Prod. vol. 82, pp. 3020-3024, 2019.

S. Uma and P. Devika, “In vitro studies on the antidiabetic activity of 2-thiohydantoin using α-amylase and α-glucosidase,” Asian J. Pharm. Clin. Res. vol. 12, pp. 155-157, 2019.

S. Vengurlekar, R. Sharma, and P. Trivedi, “In vitro studies on the antidiabetic activity of 2-thiohydantoin using α-amylase and α-glucosidase,” Lett. Drug Des. Discov. vol. 9, pp. 549-555, 2012.

G. A. Petersson, A. Bennett, T. G. Tensfeldt, M. A. Al-Laham, W. A. Shirley, and J. Mantzaris, “A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row atoms,” J. Chem. Phys. vol. 89, pp. 2193-218, 1988.

G. A. Petersson and M. A. Al-Laham, “A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms,” J. Chem. Phys. vol. 94, pp. 6081-90, 1991.

G. Gogl, K. V. Tugaeva, P. Eberling, C. Kostmann, G. Trave, and N. N. Sluchanko, “Hierarchized phosphotarget binding by the seven human 14-3-3 isoforms,” Nature Comm. vol. 12, pp. 1-12, 2021.

G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner. R. K. Belew, D. S. Goodsell, and A. J. Olson, “Autodock4 amd autodocktools4: automated docking with selective receptor flexibility,” J. Comp. Chem. vol. 19, pp. 2785-2791, 2009.

M. F. Adasme, K. L. Linnemann, S. N. Bolz, F. Kaiser, S. Salentin, V. J. Haupt, and M. Schroeder, “PLIP 2021: expanding the scope of the protein-ligand interaction profiler to DNA and RNA,” Nucl. Acids Res. vol. 49, pp. W530-W534, 2021.

A. C. Wallace, R. A. Laskowski, and J. M. Thornton, “Ligplot: a program to generate schematic diagrams of protein-ligand interations,” Protein Eng. vol. 8, pp.127-134, 1995.

A. Volkamer, D. Kuhn, D. Grombacher. F. Rippmann, and M. Rarey, “Combining global and local measures for structure-based drugability predictions,” J. Chem. Inf. Model vol. 52, pp. 360-372, 2012.

A. Volkamer, A. Griewel, T. Grombacher, and M. Rarey, “Analyzing the topology of active sites: on the prediction of pockets and subpockets,” J. Chem. Inf. Model vol. 50, pp. 2041-2052, 2010.

A. Daina, O. Michielin, and V. Zoete, “SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules,” Scientific Reports, vol. 7, pp. 1-13, 2017.

A. Lees, T. Sessler, and S. Mcdade, “Dying to survive-the p53 paradox,” Cancers, vol. 13, pp. 1-25, 2021.




DOI: http://dx.doi.org/10.12962/j25493736.v7i2.14722

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.