Tinjauan Molekular Proses Loading dan Unloading Rifampicin pada Etil Selulosa dan (Etil selulosa)-g-(Poly-Dimethylaminoethyl Acrylate)

Mia Ledyastuti, Rachmawati Rachmawati, Ikhsan Ibrahim

Abstract


Tuberkulosis merupakan penyakit menular dengan jumlah kematian 34 orang per 100.000 penduduk. Oleh karena itu,penelitian mengenai pengobatan tuberkulosis menjadi penting dari segi penghantaran obat maupun efektivitas obat. Kopolimer etil selulosa-g-(poly-dimethylaminoethylacrylate) atau EC-g-PDMAEA mempunyai potensi sebagai pembawa obat karena  dapat membentuk misel yang sesuai untuk jenis obat hidrofobik yaitu rifampicin. Pemahaman perilaku molekular dan interaksi EC-g-PDMAEA terhadap rifampicin menjadi bagian yang penting dalam sintesis dan aplikasi kopolimer dari etil selulosa ke depannya. Berdasarkan simulasi dinamika molekul menggunakan GROMACS 2020.6, EC-g-PDMAEA menghasilkan pola loading rifampicin yang mirip dengan pola loading dari etil selulosa (EC). Pola unloading dari EC-g-PDMAEA menunjukkan tren data yang lebih baik dibandingkan dengan EC dari segi pergeseran puncak Radial Distribution Function yang diamati untuk rifampicin dari jarak 0,86 menuju 0,96 nm. 

Keywords


rifampicin; dinamika molekul; misel; penghantaran obat

Full Text:

PDF

References


Novrizaldi, 2022, Butuh Peran Multi Sektor Untuk Turunkan Penyakit Tuberkulosis Di Indonesia. Available at: https://www.kemenkopmk.go.id (Accessed: March 16, 2023).

Liechty, W. B., Kryscio, D. R., Slaughter, B. V., and Peppas, N. A., 2010, Polymers for drug delivery systems, Annu. Rev. Chem. Biomol. Eng., 1, 149–173.

Sung, Y. K., and Kim, S. W., 2020, Recent advances in polymeric drug delivery systems, Biomater. Res., 341, .

Osorno, L. L., Brandley, A. N., Maldonado, D. E., Yiantsos, A., Mosley, R. J., and Byrne, M. E., 2021, Review of contemporary self-assembled systems for the controlled delivery of therapeutics in medicine, Nanomaterials, 11 (2), 1–28.

Zhang, Y., Huang, Y., and Li, S., 2014, Polymeric micelles: Nanocarriers for cancer-targeted drug delivery, AAPS PharmSciTech, 15 (4), 862–871.

Morrow, B. H., Payne, G. F., and Shen, J., 2015, PH-responsive self-assembly of polysaccharide through a rugged energy landscape, J. Am. Chem. Soc., 137 (40), 13024–13030.

Eslami, M., Nikkhah, S. J., Eslami, E., and Hashemianzadeh, S. M., 2020, A new insight into encapsulation process of a drug molecule in the polymer/surfactant system: a molecular simulation study, Struct. Chem., 31 (5), 2051–2062.

Li, J., Ying, S., Ren, H., Dai, J., Zhang, L., Liang, L., Wang, Q., Shen, Q., and Shen, J. W., 2020, Molecular dynamics study on the encapsulation and release of anti-cancer drug doxorubicin by chitosan, Int. J. Pharm., 580 (March), 119241.

Seddiqi, H., Oliaei, E., Honarkar, H., Jin, J., Geonzon, L. C., Bacabac, R. G., and Klein-Nulend, J., 2021, Cellulose and its derivatives: towards biomedical applications, Cellulose, 28 (4), 1893–1931.

Fidale, L. C., Heinze, T., and El Seoud, O. A., 2013, Perichromism: A powerful tool for probing the properties of cellulose and its derivatives, Carbohydr. Polym., 93 (1), 129–134.

Wang, D., Tan, J., Kang, H., Ma, L., Jin, X., Liu, R., and Huang, Y., 2011, Synthesis, self-assembly and drug release behaviors of pH-responsive copolymers ethyl cellulose-graft-PDEAEMA through ATRP, Carbohydr. Polym., 84 (1), 195–202.

Yan, Q., Yuan, J., Zhang, F., Sui, X., Xie, X., Yin, Y., Wang, S., and Wei, Y., 2009, Cellulose-based dual graft molecular brushes as potential drug nanocarriers: Stimulus-responsive micelles, self-assembled phase transition behavior, and tunable crystalline morphologies, Biomacromolecules, 10 (8), 2033–2042.

Patil, J. S., Devi, V. K., Devi, K., and Sarasija, S., 2015, A novel approach for lung delivery of rifampicin‐loaded liposomes in dry powder form for the treatment of tuberculosis,.

Guo, Y., Wang, X., Shu, X., Shen, Z., and Sun, R. C., 2012, Self-assembly and paclitaxel loading capacity of cellulose-graft- poly(lactide) nanomicelles, J. Agric. Food Chem., 60 (15), 3900–3908.

Dai, L., and Si, C. L., 2017, Cellulose-graft-poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery, Mater. Lett., 207, 213–216.

Braunecker, W. A., and Matyjaszewski, K., 2008, Erratum to:“Controlled/living radical polymerization: Features, developments and perspectives”[Prog. Polym. Sci. 32 (2007) 93--146], Prog. Polym. Sci., 1 (33), 165.

Ledyastutia, M., Jason, J., and Aditama, R., 2021, Effect of nanocellulose on water-oil interfacial tension, Key Eng. Mater., 874 KEM, 13–19.

Jo, S., Kim, T., Iyer, V. G., and Im, W., 2008, CHARMM-GUI: A Web-based Graphical User Interface for CHARMM,.

Brooks, B. R., Brooks III, C. L., Mackerell Jr., A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., Kuczera, K., Lazaridis, T., Ma, J., Ovchinnikov, V., Paci, E., Pastor, R. W., Post, C. B., Pu, J. Z., Schaefer, M., Tidor, B., Venable, R. M., Woodcock, H. L., Wu, X., Yang, W., York, D. M., and Karplus, M., 2009, CHARMM: The biomolecular simulation program, J. Comput. Chem., 30 (10), 1545–1614.

Lee, J., Cheng, X., Swails, J. M., Yeom, M. S., Eastman, P. K., Lemkul, J. A., Wei, S., Buckner, J., Jeong, J. C., Qi, Y., Jo, S., Pande, V. S., Case, D. A., Brooks, C. L., MacKerell, A. D., Klauda, J. B., and Im, W., 2016, CHARMM-GUI Input Generator for NAMD, GROMACS, AMBER, OpenMM, and CHARMM/OpenMM Simulations Using the CHARMM36 Additive Force Field, J. Chem. Theory Comput., 12 (1), 405–413.

Martinez, L., Andrade, R., Birgin, E. G., and Martínez, J. M., 2009, PACKMOL: a package for building initial configurations for molecular dynamics simulations, J. Comput. Chem., 30 (13), 2157–2164.

Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., and Hutchison, G. R., 2012, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform, J. Cheminform., 4 (1), 17.

Malde, A. K., Zuo, L., Breeze, M., Stroet, M., Poger, D., Nair, P. C., Oostenbrink, C., and Mark, A. E., 2011, An Automated force field Topology Builder (ATB) and repository: Version 1.0, J. Chem. Theory Comput., 7 (12), 4026–4037.

Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., and Case, D. A., 2004, Development and testing of a general amber force field, J. Comput. Chem., 25 (9), 1157–1174.

Wang, J., Wang, W., Kollman, P. A., and Case, D. A., 2006, Automatic atom type and bond type perception in molecular mechanical calculations, J. Mol. Graph. Model., 25 (2), 247–260.

Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., and Pedersen, L. G., 1998, A smooth particle mesh Ewald method, J. Chem. Phys., 103 (19), 8577.

Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., and Lindahl, E., 2013, GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29 (7), 845–854.

Szilárd, P., Abraham, M. J., Kutzner, C., Hess, B., and Lindahl, E., 2015, Tackling Exascale Software Challenges in Molecular Dynamics Simulations with GROMACS, Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), 8759, 3–27.

Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., and Lindah, E., 2015, GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX, 1–2, 19–25.

Evans, D. J., and Holian, B. L., 1985, The Nose-Hoover thermostat, J. Chem. Phys., 83 (8), 4069–4074.

Parrinello, M., and Rahman, A., 1981, Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys., 52 (12), 7182–7190.

Wasilewska, K., and Winnicka, K., 2019, Ethylcellulose-A Pharmaceutical Excipient with Multidirectional Application in Drug Dosage Forms Development, Mater. (Basel, Switzerland), 12 (20), .

Fenwick, S., Vanga, S. K., DiNardo, A., Wang, J., Raghavan, V., and Singh, A., 2019, Computational evaluation of the effect of processing on the trypsin and alpha-amylase inhibitor from Ragi (Eleusine coracana) seed, Eng. Reports, 1 (4), 1–13.

Sneha, P., and Priya Doss, C. G., 2016, Molecular Dynamics: New Frontier in Personalized Medicine, Adv. Protein Chem. Struct. Biol., 102, 181–224.

Rhodes, G., 2006, Other Diffraction Methods, Crystallogr. Made Cryst. Clear, 211–235.

Deka, H., Sarmah, R., Sharma, A., and Biswas, S., 2015, Modelling and Characterization of Glial Fibrillary Acidic Protein, Bioinformation, 11 (8), 393.

Bhattacharya, A., and Misra, B. N., 2004, Grafting: A versatile means to modify polymers: Techniques, factors and applications, Prog. Polym. Sci., 29 (8), 767–814.

Patience, G. S., and Patience, P. A., 1990, Temperature, Exp. Methods Instrum. Chem. Eng., 159–199.

Sha, W., Wu, X., and Keong, K. G., 2011, Molecular dynamics (MD) simulation of the diamond pyramid structure in electroless copper deposits, Electroless Copp. Nickel–Phosphorus Plat., 82–103.

Schmidt, B., and Hildebrandt, A., 2018, Dedicated bioinformatics analysis hardware, Encycl. Bioinforma. Comput. Biol. ABC Bioinforma., 1–3, 1142–1150.

Sargsyan, K., Grauffel, C., and Lim, C., 2017, How Molecular Size Impacts RMSD Applications in Molecular Dynamics Simulations, J. Chem. Theory Comput., 13 (4), 1518–1524.

Nurbaiti, S., Martoprawiro, M. A., Akhmaloka, and Hertadi, R., 2012, The role of electrostatic interactions on klentaq1 insight for domain separation., Bioinform. Biol. Insights, 6, 225–234.




DOI: http://dx.doi.org/10.12962/j25493736.v8i1.16517

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.