SrTiO3 Nanokubus: Sintesis, Kontrol Morfologi dan Sifat Termoelektrik (Tinjauan)

Yulia Eka Putri, Ratesha Najela, Nova Andriani, Diana Vanda Wellia

Abstract


Thermoelectrics (TE), enabling the conversion of heat energy into electricity directly, provide the opportunity as alternative energy for conventional power generator with high efficiency. To date, bulk SrTiO3 nanocubes is the most promising oxide-based TE materials candidate. The nanoarchitecture of 3-dimensional SrTiO3 nanocubes (3D-STO) is the main target in realizing high performance TE materials with high ZT value comparable to commercially available telluride-based compound. The proper synthesis method is needed to form SrTiO3 with uniform nano-sized cubic particles. Liquid synthesis technique namely hydrothermal and solvothermal, succeeded in forming 20 nm of SrTiO3 nanocubes with high crystallinity and homogeneous morphology

Keywords


Semiconductor; perovskite; liquid synthesis; thermoelectric properties; 3D-STO

Full Text:

Full Text

References


K. Van Benthem, C. Elsässer, and R. H. French, “Bulk electronic structure of SrTiO3: Experiment and theory,” J. Appl. Phys., vol. 90, no. 12, pp. 6156–6164, Dec. 2001, doi: 10.1063/1.1415766.

A. G. H. Smith, Structural and Defect Properties of Strontium Titanate. London, 2011.

A. Stanulis, A. Selskis, R. Ramanauskas, A. Beganskiene, and A. Kareiva, “Low temperature synthesis and characterization of strontium stannate-titanate ceramics,” Mater. Chem. Phys., vol. 130, no. 3, pp. 1246–1250, 2011, doi: 10.1016/j.matchemphys.2011.09.005.

K. Tsuda and M. Tanaka, “Refinement of crystal structure parameters using convergent‐beam electron diffraction: the low‐temperature phase of SrTiO3,” Acta Crystallogr. Sect. A, vol. 51, no. 1, pp. 7–19, Jan. 1995, doi: 10.1107/S010876739400560X.

J. G. Bednorz and H. J. Scheel, “Flame-fusion growth of SrTiO3,” J. Cryst. Growth, vol. 41, no. 1, pp. 5–12, Nov. 1977, doi: 10.1016/0022-0248(77)90088-4.

N. ‐H. Chan, R. K. Sharma, and D. M. Smyth, “Nonstoichiometry in SrTiO3,” J. Electrochem. Soc., vol. 128, no. 8, pp. 1762–1769, Aug. 1981, doi: 10.1149/1.2127727.

T. Higuchi, T. Tsukamoto, N. Sata, and M. Ishigame, “Electronic structure of-type by photoemission spectroscopy,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 57, no. 12, pp. 6978–6983, Mar. 1998, doi: 10.1103/PhysRevB.57.6978.

S. Hui and A. Petric, “Evaluation of yttrium-doped SrTiO3 as an anode for solid oxide fuel cells,” J. Eur. Ceram. Soc., vol. 22, no. 9–10, pp. 1673–1681, Sep. 2002, doi: 10.1016/S0955-2219(01)00485-X.

O. N. Tufte and P. W. Chapman, “Electron mobility in semiconducting strontium titanate,” Phys. Rev., vol. 155, no. 3, pp. 796–802, Mar. 1967, doi: 10.1103/PhysRev.155.796.

T. Okuda, K. Nakanishi, S. Miyasaka, and Y. Tokura, “Large thermoelectric response of metallic perovskites: Sr1−xLaxTiO3 (0 ≤ x ≤ 0.1),” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 63, no. 11, p. 113104, Mar. 2001, doi: 10.1103/PhysRevB.63.113104.

T. Xu, J. Wang, T. Shimada, and T. Kitamura, “Direct approach for flexoelectricity from first-principles calculations: Cases for SrTiO3 and BaTiO3,” J. Phys. Condens. Matter, vol. 25, no. 41, p. 415901, Oct. 2013, doi: 10.1088/0953-8984/25/41/415901.

Y. A. Abramov, V. G. Tsirelson, V. E. Zavodnik, S. A. Ivanov, and I. D. Brown, “The chemical bond and atomic displacements in SrTiO3 from X‐ray diffraction analysis,” Acta Crystallogr. Sect. B, vol. 51, no. 6, pp. 942–951, Dec. 1995, doi: 10.1107/S0108768195003752.

Q. Fu, T. He, J. L. Li, and G. W. Yang, “Band-engineered SrTiO3 nanowires for visible light photocatalysis,” J. Appl. Phys., vol. 112, no. 10, p. 104322, Nov. 2012, doi: 10.1063/1.4767229.

S. Patial, V. Hasija, P. Raizada, P. Singh, A. A. P. Khan Singh, and A. M. Asiri, “Tunable photocatalytic activity of SrTiO3 for water splitting: Strategies and future scenario,” J. Environ. Chem. Eng., vol. 8, no. 3, p. 103791, Jun. 2020, doi: 10.1016/j.jece.2020.103791.

Y. Hu, O. K. Tan, J. S. Pan, H. Huang, and W. Cao, “The effects of annealing temperature on the sensing properties of low temperature nano-sized SrTiO3 oxygen gas sensor,” in Sensors and Actuators, B: Chemical, Jul. 2005, vol. 108, no. 1-2 SPEC. ISS., pp. 244–249, doi: 10.1016/j.snb.2004.10.053.

T. Hasegawa, M. Shirai, and K. Tanaka, “Localizing nature of photo-excited states in SrTiO3,” J. Lumin., vol. 87, pp. 1217–1219, May 2000, doi: 10.1016/S0022-2313(99)00520-7.

Y. Hu, O. K. Tan, J. S. Pan, and X. Yao, “A new form of nanosized SrTiO3 material for near-human-body temperature oxygen sensing applications,” J. Phys. Chem. B, vol. 108, no. 30, pp. 11214–11218, Jul. 2004, doi: 10.1021/jp048973z.

P. I. Nabokin, D. Souptel, and A. M. Balbashov, “Floating zone growth of high-quality SrTiO3 single crystals,” in Journal of Crystal Growth, Apr. 2003, vol. 250, no. 3–4, pp. 397–404, doi: 10.1016/S0022-0248(02)02391-6.

P. Balaya et al., “Synthesis and Characterization of Nanocrystalline SrTiO3,” J. Am. Ceram. Soc., vol. 0, no. 0, pp. 060612075903003-???, Jun. 2006, doi: 10.1111/j.1551-2916.2006.01133.x.

H. Yamaguchi, P. Y. Lesaicherre, T. Sakuma, Y. Miyasaka, A. Ishitani, and M. Yoshida, “Structural and electrical characterization of Srtio3 thin films prepared by metal organic chemical vapor deposition,” Jpn. J. Appl. Phys., vol. 32, no. 9, pp. 4069–4073, Sep. 1993, doi: 10.1143/JJAP.32.4069.

A. J. Ahmed et al., “Enhancement of thermoelectric properties of La-doped SrTiO3 bulk by introducing nanoscale porosity,” R. Soc. Open Sci., vol. 6, no. 10, Oct. 2019, doi: 10.1098/rsos.190870.

U. Sulaeman, S. Yin, and T. Sato, “Solvothermal synthesis and photocatalytic properties of chromium-doped SrTiO3 nanoparticles,” Appl. Catal. B Environ., vol. 105, no. 1–2, pp. 206–210, 2011, doi: 10.1016/j.apcatb.2011.04.017.

H. Yang, K. Kan, J. Ouyang, and Y. Li, “Solvothermal synthesis and optical properties of Mn2+-doped SrTiO3 powders,” J. Alloys Compd., vol. 485, no. 1–2, pp. 351–355, 2009, doi: 10.1016/j.jallcom.2009.05.109.

F. Azough et al., “Self-Nanostructuring in SrTiO3: A Novel Strategy for Enhancement of Thermoelectric Response in Oxides,” ACS Appl. Mater. Interfaces, vol. 11, no. 36, pp. 32833–32843, 2019, doi: 10.1021/acsami.9b06483.

M. Zhang, S. Wei, W. Ren, and R. Wu, “Development of High Sensitivity Humidity Sensor Based on Gray TiO2/SrTiO3 Composite,” Sensors, vol. 17, no. 6, p. 1310, Jun. 2017, doi: 10.3390/s17061310.

M. L. Moreira et al., “Quantum mechanics insight into the microwave nucleation of SrTiO 3 nanospheres,” J. Phys. Chem. C, vol. 116, no. 46, pp. 24792–24808, Nov. 2012, doi: 10.1021/jp306638r.

J. Niu, P. X. Yan, W. S. Seo, and K. Koumoto, “Hydrothermal synthesis of SrTiO 3 nanoplates through epitaxial self-assembly of nanocubes,” J. Nanosci. Nanotechnol., vol. 12, no. 3, pp. 2685–2690, 2012, doi: 10.1166/jnn.2012.5676.

G. Xu et al., “Self-assembly and formation mechanism of single-crystal SrTiO3 nanosheets via solvothermal route with ethylene glycol as reaction medium,” CrystEngComm, vol. 15, no. 36, pp. 7206–7211, Sep. 2013, doi: 10.1039/c3ce40571k.

J. J. Urban, W. S. Yun, Q. Gu, and H. Park, “Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate,” J. Am. Chem. Soc., vol. 124, no. 7, pp. 1186–1187, Feb. 2002, doi: 10.1021/ja017694b.

M. Miyauchi, “Thin films of single-crystalline SrTiO3 nanorod arrays and their surface wettability conversion,” J. Phys. Chem. C, vol. 111, no. 33, pp. 12440–12445, Aug. 2007, doi: 10.1021/jp073604z.

J. Jitputti, P. Charoensirithavorn, and S. Yoshikawa, “Hydrothermal Production of SrTiO 3 Nanotube Arrays,” Chem. Lett., vol. 36, no. 12, pp. 1508–1509, Dec. 2007, doi: 10.1246/cl.2007.1508.

Z. Zheng, B. Huang, X. Qin, X. Zhang, and Y. Dai, “Facile synthesis of SrTiO3 hollow microspheres built as assembly of nanocubes and their associated photocatalytic activity,” J. Colloid Interface Sci., vol. 358, no. 1, pp. 68–72, Jun. 2011, doi: 10.1016/j.jcis.2011.02.032.

J. Kang, J. Ryu, E. Ko, and Y. Tak, “Electrochemical fabrication of SrTiO 3 nanowires with nanoporous alumina template,” in Journal of Nanoscience and Nanotechnology, Nov. 2007, vol. 7, no. 11, pp. 4194–4197, doi: 10.1166/jnn.2007.111.

F. A. Rabuffetti et al., “Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature,” Chem. Mater., vol. 20, no. 17, pp. 5628–5635, Sep. 2008, doi: 10.1021/cm801192t.

T. Xian, H. Yang, J. F. Dai, Z. Q. Wei, J. Y. Ma, and W. J. Feng, “Photocatalytic properties of SrTiO3 nanoparticles prepared by a polyacrylamide gel route,” Mater. Lett., vol. 65, no. 21–22, pp. 3254–3257, Nov. 2011, doi: 10.1016/j.matlet.2011.07.019.

F. Dang, C. Wan, N. H. Park, K. Tsuruta, W. S. Seo, and K. Koumoto, “Thermoelectric performance of SrTiO3 enhanced by nanostructuring - Self-assembled particulate film of nanocubes,” ACS Appl. Mater. Interfaces, vol. 5, no. 21, pp. 10933–10937, Nov. 2013, doi: 10.1021/am403112n.

K. Koumoto, Y. Wang, R. Zhang, A. Kosuga, and R. Funahashi, “Oxide Thermoelectric Materials: A Nanostructuring Approach,” Annu. Rev. Mater. Res., vol. 40, no. 1, pp. 363–394, Jun. 2010, doi: 10.1146/annurev-matsci-070909-104521.

A. Stein, S. W. Keller, and T. E. Mallouk, “Turning down the heat: Design and mechanism in solid-state synthesis,” Science (80-. )., vol. 259, no. 5101, pp. 1558–1564, 1993, doi: 10.1126/science.259.5101.1558.

K. Byrappa, N. Keerthiraj, and S. M. Byrappa, Hydrothermal Growth of Crystals-Design and Processing, Second Edi., vol. 2. Elsevier B.V., 2015.

M. Aliofkhazraei, “Handbook of nanoparticles,” Handb. Nanoparticles, no. February 2018, pp. 1–1426, 2015, doi: 10.1007/978-3-319-15338-4.

J. F. Banfield, “Oriented attachment and growth, twinning, polytypism, and formation of metastable phases: Insights from nanocrystalline TiO2,” Am. Mineral., vol. 83, no. 9–10, pp. 1077–1082, 1998, doi: 10.2138/am-1998-9-1016.

F. Dang et al., “Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method,” CrystEngComm, vol. 13, no. 11, pp. 3878–3883, Jun. 2011, doi: 10.1039/c1ce05296a.

K. Fujinami, K. Katagiri, J. Kamiya, T. Hamanaka, and K. Koumoto, “Sub-10 nm strontium titanate nanocubes highly dispersed in non-polar organic solvents,” Nanoscale, vol. 2, no. 10, pp. 2080–2083, Oct. 2010, doi: 10.1039/c0nr00543f.

F. Pellegrino et al., “Polyethylene Glycol as Shape and Size Controller for the Hydrothermal Synthesis of SrTiO3 Cubes and Polyhedra,” Nanomaterials, vol. 10, no. 9, p. 1892, Sep. 2020, doi: 10.3390/nano10091892.

F. Dang et al., “Growth of monodispersed SrTiO3 nanocubes by thermohydrolysis method,” CrystEngComm, vol. 13, no. 11, pp. 3878–3883, 2011, doi: 10.1039/c1ce05296a.

G. Sreedhar et al., “A role of lithiated sarcosine TFSI on the formation of single crystalline SrTiO3 nanocubes via hydrothermal method,” Mater. Lett., vol. 133, pp. 127–131, Oct. 2014, doi: 10.1016/j.matlet.2014.06.170.

S. T. Huang, W. W. Lee, J. L. Chang, W. S. Huang, S. Y. Chou, and C. C. Chen, “Hydrothermal synthesis of SrTiO3 nanocubes: Characterization, photocatalytic activities, and degradation pathway,” J. Taiwan Inst. Chem. Eng., vol. 45, no. 4, pp. 1927–1936, Jul. 2014, doi: 10.1016/j.jtice.2014.02.003.

G. Wu et al., “Hydrothermal synthesis and visible-light-driven photocatalytic degradation for tetracycline of Mn-doped SrTiO 3 nanocubes,” Appl. Surf. Sci., vol. 333, pp. 39–47, Apr. 2015, doi: 10.1016/j.apsusc.2015.02.008.

L. B. Taşyürek, M. Sevim, Z. Caldiran, S. Aydogan, and O. Metin, “The synthesis of SrTiO3 nanocubes and the analysis of nearly ideal diode application of Ni/SrTiO3 nanocubes/n-Si heterojunctions,” Mater. Res. Express, vol. 5, no. 1, Jan. 2018, doi: 10.1088/2053-1591/aaa745.

A. Banik, M. S. Ansari, S. Alam, and M. Qureshi, “Thermodynamic Barrier and Light Scattering Effects of Nanocube Assembled SrTiO3 in Enhancing the Photovoltaic Properties of Zinc Oxide Based Dye Sensitized Solar Cells,” J. Phys. Chem. C, vol. 122, no. 29, pp. 16550–16560, Jul. 2018, doi: 10.1021/acs.jpcc.8b03623.

S. Shahabuddin et al., “Polyaniline-SrTiO 3 nanocube based binary nanocomposite as highly stable electrode material for high performance supercapaterry,” Ceram. Int., vol. 45, no. 9, pp. 11428–11437, 2019, doi: 10.1016/j.ceramint.2019.03.009.

P. Eghbali, A. Hassani, B. Sündü, and Ö. Metin, “Strontium titanate nanocubes assembled on mesoporous graphitic carbon nitride (SrTiO3/mpg-C3N4): Preparation, characterization and catalytic performance,” J. Mol. Liq., vol. 290, Sep. 2019, doi: 10.1016/j.molliq.2019.111208.

G. Canu and V. Buscaglia, “Hydrothermal synthesis of strontium titanate: Thermodynamic considerations, morphology control and crystallisation mechanisms,” CrystEngComm, vol. 19, no. 28. Royal Society of Chemistry, pp. 3867–3891, Jul. 17, 2017, doi: 10.1039/c7ce00834a.

V. Kalyani et al., “Hydrothermal Synthesis of SrTiO3: Role of Interfaces,” Cryst. Growth Des., vol. 15, no. 12, pp. 5712–5725, Oct. 2015, doi: 10.1021/acs.cgd.5b00770.

X. Lin, “Synthesis and Characterization of Self-assembled Perovskite Oxide Nanocubes for Resistive Random Access Memory Applications,” no. May, 2013.

Z. M. Sui et al., “Capping effect of CTAB on positively charged Ag nanoparticles,” Phys. E Low-Dimensional Syst. Nanostructures, vol. 33, no. 2, pp. 308–314, 2006, doi: 10.1016/j.physe.2006.03.151.

T. Wang et al., “The adsorption of HEC and PVA as surfactants on SrTiO3 surface: A theoretical, experimental and applied investigation,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 606, p. 125521, Dec. 2020, doi: 10.1016/j.colsurfa.2020.125521.

K. G. Knauss, M. J. Dibley, W. L. Bourcier, and H. F. Shaw, “Ti(IV) hydrolysis constants derived from rutile solubility measurements made from 100 to 300°C,” Appl. Geochemistry, vol. 16, no. 9–10, pp. 1115–1128, Jul. 2001, doi: 10.1016/S0883-2927(00)00081-0.

R. I. Walton, F. Millange, R. I. Smith, T. C. Hansen, and D. O’Hare, “Real time observation of the hydrothermal crystallization of barium titanate using in situ neutron powder diffraction,” J. Am. Chem. Soc., vol. 123, no. 50, pp. 12547–12555, Dec. 2001, doi: 10.1021/ja011805p.

Q. Ma, K. ichi Mimura, and K. Kato, “Size and morphology controlling of barium titanate nanocubes by using hydrothermal method,” J. Korean Phys. Soc., vol. 66, no. 9, pp. 1364–1366, May 2015, doi: 10.3938/jkps.66.1364.

Q. Ma, K. I. Mimura, and K. Kato, “Tuning shape of barium titanate nanocubes by combination of oleic acid/tert-butylamine through hydrothermal process,” J. Alloys Compd., vol. 655, pp. 71–78, Jan. 2016, doi: 10.1016/j.jallcom.2015.09.156.

Q. Ma, K. I. Mimura, and K. Kato, “Diversity in size of barium titanate nanocubes synthesized by a hydrothermal method using an aqueous Ti compound,” CrystEngComm, vol. 16, no. 36, pp. 8398–8405, Sep. 2014, doi: 10.1039/c4ce01195c.

H. A. Ávila, L. A. Ramajo, M. M. Reboredo, M. S. Castro, and R. Parra, “Hydrothermal synthesis of BaTiO3 from different Ti-precursors and microstructural and electrical properties of sintered samples with submicrometric grain size,” Ceram. Int., vol. 37, no. 7, pp. 2383–2390, Sep. 2011, doi: 10.1016/j.ceramint.2011.03.032.

K. Y. Chen and Y. W. Chen, “Preparation of barium titanate ultrafine particles from rutile titania by a hydrothermal conversion,” Powder Technol., vol. 141, no. 1–2, pp. 69–74, Mar. 2004, doi: 10.1016/j.powtec.2004.03.002.

Z. Pu, M. Cao, J. Yang, K. Huang, and C. Hu, “Controlled synthesis and growth mechanism of hematite nanorhombohedra, nanorods and nanocubes,” Nanotechnology, vol. 17, no. 3, pp. 799–804, Feb. 2006, doi: 10.1088/0957-4484/17/3/031.

B. L. Phoon, C. W. Lai, J. C. Juan, P. L. Show, and W. H. Chen, “A review of synthesis and morphology of SrTiO3 for energy and other applications,” International Journal of Energy Research, vol. 43, no. 10. John Wiley and Sons Ltd, pp. 5151–5174, Aug. 01, 2019, doi: 10.1002/er.4505.

H. Bantawal, U. S. Shenoy, and D. K. Bhat, “Vanadium-Doped SrTiO3 Nanocubes: Insight into role of vanadium in improving the photocatalytic activity,” Appl. Surf. Sci., vol. 513, p. 145858, May 2020, doi: 10.1016/j.apsusc.2020.145858.

R. A. Lucky, R. Sui, J. M. H. Lo, and P. A. Charpentier, “Effect of solvent on the crystal growth of one-dimensional ZrO 2.TiO 2 nanostructures,” Cryst. Growth Des., vol. 10, no. 4, pp. 1598–1604, Apr. 2010, doi: 10.1021/cg901145d.

K. Nakashima, M. Kera, I. Fujii, and S. Wada, “A new approach for the preparation of SrTiO3 nanocubes,” Ceram. Int., vol. 39, no. 3, pp. 3231–3234, 2013, doi: 10.1016/j.ceramint.2012.10.009.

Q. Kuang and S. Yang, “Template synthesis of single-crystal-like porous SrTiO3 nanocube assemblies and their enhanced photocatalytic hydrogen evolution,” ACS Appl. Mater. Interfaces, vol. 5, no. 9, pp. 3683–3690, May 2013, doi: 10.1021/am400254n.

S. Wada, M. Kera, T. Goto, S. Iwatsuki, I. Fujii, and K. Nakashima, “Preparation of strontium titanate nanocube particles using complex titanium raw materials and their accumulations,” in Key Engineering Materials, 2013, vol. 566, pp. 298–301, doi: 10.4028/www.scientific.net/KEM.566.298.

N. H. Park, F. Dang, C. Wan, W. S. Seo, and K. Koumoto, “Self-originating two-step synthesis of core-shell structured La-doped SrTiO 3 nanocubes,” J. Asian Ceram. Soc., vol. 1, no. 1, pp. 35–40, 2013, doi: 10.1016/j.jascer.2013.02.004.

J. Xu et al., “Solvothermal synthesis nitrogen doped SrTiO3 with high visible light photocatalytic activity,” Ceram. Int., vol. 40, no. 7 PART B, pp. 10583–10591, 2014, doi: 10.1016/j.ceramint.2014.03.037.

T. Kimijima, K. Kanie, M. Nakaya, and A. Muramatsu, “Solvothermal synthesis of SrTiO3 nanoparticles precisely controlled in surface crystal planes and their photocatalytic activity,” Appl. Catal. B Environ., vol. 144, pp. 462–467, Jan. 2014, doi: 10.1016/j.apcatb.2013.07.051.

Y. Eka Putri, R. Rahma Yanti, and D. Vanda Wellia, “Morphology-Controlled Synthesis of SrTiO3 Nanocube…(Yulia Eka Putri et al.) 25 MORPHOLOGY-CONTROLLED SYNTHESIS OF SrTiO3 NANOCUBE BY CAPPING AGENT-ASSISTED SOLVOTHERMAL METHOD SINTESIS NANOKUBUS SrTiO3 DENGAN PENAMBAHAN CAPPING AGENT SEBAGAI PENGONTROL MORFOLOGI PADA METODA SOLVOTERMAL,” May 2016. Accessed: Apr. 30, 2021. [Online]. Available: https://ojs.jmolekul.com/ojs/index.php/jm/article/view/191.

S. Wan, M. Chen, M. Ou, and Q. Zhong, “Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation,” J. CO2 Util., vol. 33, no. June, pp. 357–364, 2019, doi: 10.1016/j.jcou.2019.06.024.

T. Kimijima, K. Kanie, M. Nakaya, and A. Muramatsu, “Solvothermal synthesis of shape-controlled perovskite MTiO3 (M = Ba, Sr, and Ca) Particles in H2O/polyols mixed solutions,” Mater. Trans., vol. 55, no. 1, pp. 147–153, 2014, doi: 10.2320/matertrans.M2013350.

R. H. Arendt, J. H. Rosolowski, and J. W. Szymaszek, “Lead zirconate titanate ceramics from molten salt solvent synthesized powders,” Mater. Res. Bull., vol. 14, no. 5, pp. 703–709, May 1979, doi: 10.1016/0025-5408(79)90055-2.

“Advances in Ceramics: Synthesis and Characterization, Processing and ... - Google Buku.” https://books.google.co.id/books?hl=id&lr=&id=HmmQDwAAQBAJ&oi=fnd&pg=PA75&dq=rahaman+2003+ceramic+processing&ots=WPBM0wXsFn&sig=KjPGKupFphuXKtB_rU8118zSZF0&redir_esc=y#v=onepage&q=rahaman 2003 ceramic processing&f=false (accessed Apr. 18, 2021).

“Wickham D. The preparation of ferrites with the aid... - Google Cendekia.” https://scholar.google.co.id/scholar?hl=id&as_sdt=0%2C5&q=Wickham+D.+The+preparation+of+ferrites+with+the+aid+of+fused+salts.+Proc.+Int.+Conf.+Ferrites+1971%3A105–7.&btnG= (accessed Apr. 19, 2021).

Y. Mao, S. Banerjee, and S. S. Wong, “Large-Scale Synthesis of Single-Crystalline Perovskite Nanostructures,” J. Am. Chem. Soc., vol. 125, no. 51, pp. 15718–15719, Dec. 2003, doi: 10.1021/ja038192w.

F. A. Rabuffetti et al., “Synthesis-dependent first-order Raman scattering in SrTiO3 nanocubes at room temperature,” Chem. Mater., vol. 20, no. 17, pp. 5628–5635, Sep. 2008, doi: 10.1021/cm801192t.

Y. Liu, Q. Qian, J. Li, X. Zhu, M. Zhang, and T. Zhang, “Photocatalytic properties of SrTiO3 nanocubes synthesized through molten salt modified Pechini route,” J. Nanosci. Nanotechnol., vol. 16, no. 12, pp. 12321–12325, Dec. 2016, doi: 10.1166/jnn.2016.12979.

A. E. Danks, S. R. Hall, and Z. Schnepp, “The evolution of ‘sol-gel’ chemistry as a technique for materials synthesis,” Mater. Horizons, vol. 3, no. 2, pp. 91–112, 2016, doi: 10.1039/c5mh00260e.

M. Kakihana, “‘Sol-Gel’ preparation of high temperature superconducting oxides,” J. Sol-Gel Sci. Technol., vol. 6, no. 1, pp. 7–55, 1996, doi: 10.1007/BF00402588.

H. Schmidt, “Chemistry of material preparation by the sol-gel process,” J. Non. Cryst. Solids, vol. 100, no. 1–3, pp. 51–64, 1988, doi: 10.1016/0022-3093(88)90006-3.

S. . Dann, Reaction and Characterization of Solids, vol. 53, no. 9. 2000.

H. Xu, S. Q. Wei, H. Wang, M. K. Zhu, R. Yu, and H. Yan, “Preparation of shape controlled SrTiO3 crystallites by sol-gel-hydrothermal method,” J. Cryst. Growth, vol. 292, no. 1, pp. 159–164, Jun. 2006, doi: 10.1016/j.jcrysgro.2006.04.089.

Y. Ma et al., “Synthesis of nanocrystalline strontium titanate by a sol-gel assisted solid phase method and its formation mechanism and photocatalytic activity,” CrystEngComm, vol. 21, no. 26, pp. 3982–3992, 2019, doi: 10.1039/c9ce00495e.

Y. Hao, X. Wang, and L. Li, “Highly dispersed SrTiO3 nanocubes from a rapid sol-precipitation method,” Nanoscale, vol. 6, no. 14, pp. 7940–7946, Jul. 2014, doi: 10.1039/c4nr00171k.

Y. Hao, J. Zhang, M. Bi, Z. Feng, and K. Bi, “Hollow-sphere SrTiO3 nanocube assemblies with enhanced room-temperature photoluminescence,” Mater. Des., vol. 155, pp. 257–263, Oct. 2018, doi: 10.1016/j.matdes.2018.06.006.

K. Su, N. Nuraje, and N. L. Yang, “Open-bench method for the preparation of BaTiO 3, SrTiO 3, and Ba xSr 1-xTiO 3 nanocrystals at 80 °C,” Langmuir, vol. 23, no. 23, pp. 11369–11372, Nov. 2007, doi: 10.1021/la701877d.

M. Govindasamy, S. F. Wang, W. C. Pan, B. Subramanian, R. J. Ramalingam, and H. Al-lohedan, “Facile sonochemical synthesis of perovskite-type SrTiO3 nanocubes with reduced graphene oxide nanocatalyst for an enhanced electrochemical detection of α-amino acid (tryptophan),” Ultrason. Sonochem., vol. 56, pp. 193–199, Sep. 2019, doi: 10.1016/j.ultsonch.2019.04.004.

M. Klusáčková, R. Nebel, K. M. Macounová, M. Klementová, and P. Krtil, “Size control of the photo-electrochemical water splitting activity of SrTiO3 nano-cubes,” Electrochim. Acta, vol. 297, pp. 215–222, Feb. 2019, doi: 10.1016/j.electacta.2018.11.185.

K. M. Macounová, R. Nebel, M. Klusáčková, M. Klementová, and P. Krtil, “Selectivity Control of the Photo-Catalytic Water Oxidation on SrTiO 3 Nanocubes via Surface Dimensionality,” ACS Appl. Mater. Interfaces, vol. 11, no. 18, pp. 16506–16516, May 2019, doi: 10.1021/acsami.9b00342.

S. Twaha, J. Zhu, Y. Yan, and B. Li, “A comprehensive review of thermoelectric technology: Materials, applications, modelling and performance improvement,” Renewable and Sustainable Energy Reviews, vol. 65. Elsevier Ltd, pp. 698–726, Nov. 01, 2016, doi: 10.1016/j.rser.2016.07.034.

Y. E. Putri, “Study on (Bi1-yByS)n (Ti1-xAxS2)2 Misfit Layer Sulfide as a Novel Thermoelectric Material,” 2013.

Ryanuargo, S. Anwar, and S. P. Sari, “Generator Mini dengan Prinsip Termoelektrik dari Uap Panas Kondensor pada Sistem Pendingin,” J. Rekayasa Elektr., vol. 10, no. 4, pp. 180–185, 2014, doi: 10.17529/jre.v10i4.1108.

J. He, Y. Liu, and R. Funahashi, “Oxide Thermoelectrics: The Challenges, Progress, and Outlook,” J. Mater. Res., vol. 26, no. 15, pp. 1762–1772, 2011, doi: 10.1557/jmr.2011.108.

A. A. Yaremchenko et al., “Boosting Thermoelectric Performance by Controlled Defect Chemistry Engineering in Ta-Substituted Strontium Titanate,” Chem. Mater., vol. 27, no. 14, pp. 4995–5006, 2015, doi: 10.1021/acs.chemmater.5b01389.

M. G. Kanatzidis, “Nanostructured thermoelectrics: The new paradigm?,” Chem. Mater., vol. 22, no. 3, pp. 648–659, 2010, doi: 10.1021/cm902195j.

A. D. Lalonde, Y. Pei, H. Wang, and G. Jeffrey Snyder, “Lead telluride alloy thermoelectrics,” Materials Today, vol. 14, no. 11. Elsevier B.V., pp. 526–532, 2011, doi: 10.1016/S1369-7021(11)70278-4.

C. Gayner and K. K. Kar, “Recent advances in thermoelectric materials,” Prog. Mater. Sci., vol. 83, pp. 330–382, 2016, doi: 10.1016/j.pmatsci.2016.07.002.

P. P. Shang, B. P. Zhang, Y. Liu, J. F. Li, and H. M. Zhu, “Preparation and thermoelectric properties of la-doped SrTiO 3 ceramics,” J. Electron. Mater., vol. 40, no. 5, pp. 926–931, 2011, doi: 10.1007/s11664-010-1452-5.

X. Li et al., “Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs,” J. Power Sources, vol. 166, no. 1, pp. 47–52, 2007, doi: 10.1016/j.jpowsour.2007.01.008.

P. P. Shang, B. P. Zhang, J. F. Li, and N. Ma, “Effect of sintering temperature on thermoelectric properties of La-doped SrTiO3 ceramics prepared by sol-gel process and spark plasma sintering,” Solid State Sci., vol. 12, no. 8, pp. 1341–1346, 2010, doi: 10.1016/j.solidstatesciences.2010.05.005.

H. Ohta et al., “Giant thermoelectric Seebeck coefficient of a two-dimensional electron gas in SrTiO3,” Nat. Mater., vol. 6, no. 2, pp. 129–134, Jan. 2007, doi: 10.1038/nmat1821.

R. C. Zeller and R. O. Pohl, “Thermal conductivity and specific heat of noncrystalline solids,” Phys. Rev. B, vol. 4, no. 6, pp. 2029–2041, Sep. 1971, doi: 10.1103/PhysRevB.4.2029.

A. S. Henry and G. Chen, “Spectral phonon transport properties of silicon based on molecular dynamics simulations and lattice dynamics,” J. Comput. Theor. Nanosci., vol. 5, no. 2, pp. 141–152, 2008, doi: 10.1166/jctn.2008.2454.

L. D. Hicks and M. S. Dresselhaus, “Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials,” in Materials Research Society Symposium Proceedings, Nov. 1994, vol. 326, no. 1, pp. 413–418, doi: 10.1557/proc-326-413.

L. M. Daniels et al., “Phonon-glass electron-crystal behaviour by A site disorder in n-type thermoelectric oxides,” Energy Environ. Sci., vol. 10, no. 9, pp. 1917–1922, 2017, doi: 10.1039/c7ee01510k.

B. Zhang et al., “High thermoelectric performance of Nb-doped SrTiO3 bulk materials with different doping levels,” J. Mater. Chem. C, vol. 3, no. 43, pp. 11406–11411, Sep. 2015, doi: 10.1039/c5tc02016f.

J. Wang et al., “Record high thermoelectric performance in bulk SrTiO3 via nano-scale modulation doping,” Nano Energy, vol. 35, pp. 387–395, May 2017, doi: 10.1016/j.nanoen.2017.04.003.

Y. Mune, H. Ohta, K. Koumoto, T. Mizoguchi, and Y. Ikuhara, “Enhanced Seebeck coefficient of quantum-confined electrons in SrTiO 3/SrTi0.8Nb0.2O3 superlattices,” Appl. Phys. Lett., vol. 91, no. 19, p. 192105, Nov. 2007, doi: 10.1063/1.2809364.

Y. Kinemuchi, K. I. Mimura, A. Towata, and K. Kato, “Thermoelectric properties of rare earth-doped SrTiO3 nanocubes,” J. Electron. Mater., vol. 43, no. 6, pp. 2011–2016, Jun. 2014, doi: 10.1007/s11664-013-2937-9.

H. Muta, K. Kurosaki, and S. Yamanaka, “Thermoelectric properties of rare earth doped SrTiO3,” J. Alloys Compd., vol. 350, no. 1–2, pp. 292–295, Feb. 2003, doi: 10.1016/S0925-8388(02)00972-6.

N. Yalini Devi et al., “Enhancement of thermoelectric power factor of hydrothermally synthesised SrTiO3 nanostructures,” Mater. Res. Express, vol. 7, no. 1, 2020, doi: 10.1088/2053-1591/ab6c96.




DOI: http://dx.doi.org/10.12962/j25493736.v6i1.9167

Refbacks

  • There are currently no refbacks.


Licence Creative Commons
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.