OXIDATION BEHAVIOR AND MICRO STRUCTURE ANALYSIS OF NUCLEAR GRAPHITE IG-110 AT 520℃ UNDER AIR ENVIRONMENT

Herlina Herlina, Sigit Tri Wicaksono, Abu Khalid Rivai

Abstract


Graphite IG-110 is a nuclear graphite structural and moderator material that has been used for high temperature gas cooled reactors (HTGR). Under normal operating conditions or accidental entry of air or water (air ingress or water ingress), a nuclear graphite. Therefore, the aim of this study is to investigate the oxidation resistant and microstructure change behavior of graphite IG-110 at high temperature under air environment. The sample of IG-110 was tested using Magnetic Suspension Balance (MSB) to analyze the weight change by in-situ for 420 minutes at a temperature of 520oC. Morphological and microstructure analysis was carried out by optical microscope, SEM-EDS (Scanning Electron Microscope –Energy Dispersive X-ray Sprectroscope) and XRD (X-Ray Diffractometer). The results showed that Graphite IG-110 has a change in surface structure caused by the reaction of the material with oxygen in air at high temperatures. Furthermore, the crystal size of the material structure was slightly change. However, in general, the corrosion rate of graphite IG-110 at a temperature of 520℃ under the air environment is relatively low. So that if graphite IG-110 is exposed to air at a temperature of 520℃ for several hundred minutes in a nuclear reactor estimated does not suffer serious damage

Keywords


Graphite, IG-110, Oxidation, Microstructure, Air

Full Text:

PDF

References


Guiqiu Zheng, Peng Xu, Kumar Sridharan, Todd Allen (2013). Characterization of structural defects in nuclear graphite IG-110 and NBG-18. Journal of Nuclear Materials 446, 193–199. http://dx.doi.org/10.1016/j.jnucmat.2013.12.013.

Jo Jo Lee, Tushar K. Ghosh, Sudarshan K. Loyalka (2018). Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air. Journal of Nuclear Materials 500 (2018) 64-71. https://doi.org/10.1016/j.jnucmat.2017.11.053.

Joshua J. Kane, Austin C. Matthews, Christopher J. Orme, Cristian I. Contescu W. David Swank, William E. Windes (2018). Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite. Carbon 136 (2018) 369e379. carbon.2018.05.003. https://doi.org/10.1016/j.

Joshua J. Kane, Cristian I. Contescu, Rebecca E. Smith, Gerhard Strydom, William E. Windes (2017). Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution. Journal of Nuclear Materials 493, 343-367. http://dx.doi.org/10.1016/j.jnucmat.2017.06.001.

Katie L. Jones, Giuliano M. Laudone, G. Peter Matthews (2018). A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite. Carbon 128 (2018) 1-11. https://doi.org/10.1016/j.carbon.2017.11.076.

L. Kurpaska, M. Frelek-Kozak, M. Wilczopolska, W. Bonicki, A. Zaborowska, E. Wyszkowska, M. Clozel, A. Kosinska, R. Diduszko, I. Cieslik, I. Jozwik, W. Chmurzynski, G. Olszewski, B. Zajac, J. Jagielski, M. Duchna (2020). Structural and mechanical properties of different types of graphite used in nuclear applications. Journal of Molecular Structure 1217 (2020) 128370. https://doi.org/10.1016/j.molstruc.2020.128370.

Longkui Zhu, Menhe uU, Zhengcao iI, Mingyang Li, Wei Miao, Hong Li, and Alex A. Volinsky (2017). Temperature-Dependent Multi-Scale Pore Evolution and Nitrogen Diffusion in Nuclear Graphite. DOI: 10.1007/s11661-017-4076-z.

L.R. Olasov, F.W. Zeng, J.B. Spicer, N.C. Gallego, C.I. Contescu (2018). Modeling the effects of oxidation-induced porosity on the elastic moduli of nuclear graphites, Carbon. doi: https://doi.org/10.1016/j.carbon.2018.09.051.

Qing Huang, Hui Tang, Yong Liu, Xue-Hao Long, Peng Liu, Xue-Lin Wang, Qian-Tao Lei, Qi Deng, and Yong-Qi Wang (2019). Pore structure evolution of IG-110 graphite during argon ion irradiation at 600oC. https://doi.org/10.1007/s10853-019-03329-7.

Salam R, Bandriyana, Arbi Dimyati, (2013). Magnetic Suspension Balance (MSB) Function Test for high materials research. ISSN 1978-0176. Pusat Teknologi Bahan Industri Nuklir, PTBIN-BATAN Puspiptek, Tangerang Selatan.

Sumijanto, (2014). Analysis of the Impact of the Ingress Water Accident on the Integrity of Graphite Core Structure Material RGTT200K. ISSN: 2355-7524. Pusat Teknologi dan Keselamatan Reaktor Nuklir (PTKRN) – BATAN, Serpong.

W. Windes T. Burchell R. Bratton (2007). Graphite Technology Development Plan. INL/EXT-07-13165.

Wijaya H (2018). Synthesis of nano-coated graphene from graphite using a magnesium reductant. Universitas Sumatra Utara.

Ximing Sun, Yujie Dong, Yangping Zhou, Zhengcao Li, Lei Shi, Yuliang Sun & Zuoyi Zhang (2016). Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM. Journal of Nuclear Science and Technology, DOI: 10.1080/00223131.2016.1233080.

Yi Je Cho dan Kathy Lu (2020). Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors. Carbon 164, 251-260. https://doi.org/10.1016/j.carbon.2020.04.004.




DOI: http://dx.doi.org/10.12962/j2746279X.v2i1.9729

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 3.0 License.

 
View My Stats