OXIDATION BEHAVIOR AND MICRO STRUCTURE ANALYSIS OF NUCLEAR GRAPHITE IG-110 AT 520℃ UNDER AIR ENVIRONMENT
Abstract
Keywords
Full Text:
PDFReferences
Guiqiu Zheng, Peng Xu, Kumar Sridharan, Todd Allen (2013). Characterization of structural defects in nuclear graphite IG-110 and NBG-18. Journal of Nuclear Materials 446, 193–199. http://dx.doi.org/10.1016/j.jnucmat.2013.12.013.
Jo Jo Lee, Tushar K. Ghosh, Sudarshan K. Loyalka (2018). Comparison of NBG-18, NBG-17, IG-110 and IG-11 oxidation kinetics in air. Journal of Nuclear Materials 500 (2018) 64-71. https://doi.org/10.1016/j.jnucmat.2017.11.053.
Joshua J. Kane, Austin C. Matthews, Christopher J. Orme, Cristian I. Contescu W. David Swank, William E. Windes (2018). Effective gaseous diffusion coefficients of select ultra-fine, super-fine and medium grain nuclear graphite. Carbon 136 (2018) 369e379. carbon.2018.05.003. https://doi.org/10.1016/j.
Joshua J. Kane, Cristian I. Contescu, Rebecca E. Smith, Gerhard Strydom, William E. Windes (2017). Understanding the reaction of nuclear graphite with molecular oxygen: Kinetics, transport, and structural evolution. Journal of Nuclear Materials 493, 343-367. http://dx.doi.org/10.1016/j.jnucmat.2017.06.001.
Katie L. Jones, Giuliano M. Laudone, G. Peter Matthews (2018). A multi-technique experimental and modelling study of the porous structure of IG-110 and IG-430 nuclear graphite. Carbon 128 (2018) 1-11. https://doi.org/10.1016/j.carbon.2017.11.076.
L. Kurpaska, M. Frelek-Kozak, M. Wilczopolska, W. Bonicki, A. Zaborowska, E. Wyszkowska, M. Clozel, A. Kosinska, R. Diduszko, I. Cieslik, I. Jozwik, W. Chmurzynski, G. Olszewski, B. Zajac, J. Jagielski, M. Duchna (2020). Structural and mechanical properties of different types of graphite used in nuclear applications. Journal of Molecular Structure 1217 (2020) 128370. https://doi.org/10.1016/j.molstruc.2020.128370.
Longkui Zhu, Menhe uU, Zhengcao iI, Mingyang Li, Wei Miao, Hong Li, and Alex A. Volinsky (2017). Temperature-Dependent Multi-Scale Pore Evolution and Nitrogen Diffusion in Nuclear Graphite. DOI: 10.1007/s11661-017-4076-z.
L.R. Olasov, F.W. Zeng, J.B. Spicer, N.C. Gallego, C.I. Contescu (2018). Modeling the effects of oxidation-induced porosity on the elastic moduli of nuclear graphites, Carbon. doi: https://doi.org/10.1016/j.carbon.2018.09.051.
Qing Huang, Hui Tang, Yong Liu, Xue-Hao Long, Peng Liu, Xue-Lin Wang, Qian-Tao Lei, Qi Deng, and Yong-Qi Wang (2019). Pore structure evolution of IG-110 graphite during argon ion irradiation at 600oC. https://doi.org/10.1007/s10853-019-03329-7.
Salam R, Bandriyana, Arbi Dimyati, (2013). Magnetic Suspension Balance (MSB) Function Test for high materials research. ISSN 1978-0176. Pusat Teknologi Bahan Industri Nuklir, PTBIN-BATAN Puspiptek, Tangerang Selatan.
Sumijanto, (2014). Analysis of the Impact of the Ingress Water Accident on the Integrity of Graphite Core Structure Material RGTT200K. ISSN: 2355-7524. Pusat Teknologi dan Keselamatan Reaktor Nuklir (PTKRN) – BATAN, Serpong.
W. Windes T. Burchell R. Bratton (2007). Graphite Technology Development Plan. INL/EXT-07-13165.
Wijaya H (2018). Synthesis of nano-coated graphene from graphite using a magnesium reductant. Universitas Sumatra Utara.
Ximing Sun, Yujie Dong, Yangping Zhou, Zhengcao Li, Lei Shi, Yuliang Sun & Zuoyi Zhang (2016). Effects of reaction temperature and inlet oxidizing gas flow rate on IG-110 graphite oxidation used in HTR-PM. Journal of Nuclear Science and Technology, DOI: 10.1080/00223131.2016.1233080.
Yi Je Cho dan Kathy Lu (2020). Water vapor oxidation behaviors of nuclear graphite IG-110 for a postulated accident scenario in high temperature gas-cooled reactors. Carbon 164, 251-260. https://doi.org/10.1016/j.carbon.2020.04.004.
DOI: http://dx.doi.org/10.12962/j2746279X.v2i1.9729
Refbacks
- There are currently no refbacks.
This work is licensed under a Creative Commons Attribution 3.0 License.