Identifikasi Varietas Jagung dari Data Citra Satelit Menggunakan Metode Linier Spectral Unmixing (Studi Kasus: Kabupaten Ngawi)
Abstract
Keywords
Full Text:
PDFReferences
Argo Subekti. (2016). Morfologi Tanaman dan Fase Pertumbuhan Jagung. https://www.academia.edu/
BPS. (2023). Kabupaten Ngawi Dalam Angka. http://www.bps.go.id/
Breiman, L. (2001). Random Forests (Vol. 45). https://link.springer.com/article/10.1023/a:1010933404324
Cavalli, R. M. (2022). Spatial Validation of Spectral Unmixing Results: A Case Study of Venice City. Remote Sensing, 14(20). https://doi.org/10.3390/rs14205165
Cipta, I. M., Jaelani, L. M., & Sanjaya, H. (2022). Identification of Paddy Varieties from Landsat 8 Satellite Image Data 2 Using Spectral Unmixing Method in Indramayu Regency, Indonesia 3. ISPRS Int. J. Geo-Inf, 11. https://doi.org/10.3390/ijgi11100510 .
ESA. (2022). Sentinel-2 Products Specification Document. https://sentinels.copernicus.eu/web/sentinel/document-library/
Hikmawati M. (2019). AGRI-TEK: Jurnal Ilmu Pertanian,Kehutanan dan Agroteknologi. AGRI-TEK: Jurnal Ilmu Pertanian,Kehutanan Dan Agroteknologi. http://agritek.unmermadiun.ac.id/index.php/agritek
Kayad, A., Sozzi, M., Gatto, S., Marinello, F., & Pirotti, F. (2019). Monitoring within-field variability of corn yield using sentinel-2 and machine learning techniques. Remote Sensing, 11(23). https://doi.org/10.3390/rs11232873
Keshava, N. (2002). Spectral unmixing. IEEE Signal Processing Magazine, 19(1), 44–57. https://doi.org/10.1109/79.974727
Klein, A. G., & Isacks, B. L. (1999). Spectral mixture analysis of Landsat thematic mapper images applied to the detection of the transient snowline on tropical Andean glaciers. In Global and Planetary Change (Vol. 22). www.elsevier.comrlocatergloplacha
Landsat Missions. (2021). Landsat 9. USGS. https://www.usgs.gov/landsat-missions/landsat-9
Li, K., & Chen, Y. (2018). A Genetic Algorithm-based urban cluster automatic threshold method by combining VIIRS DNB, NDVI, and NDBI to monitor urbanization. Remote Sensing, 10(2). https://doi.org/10.3390/rs10020277
Lin, F., Zhang, D., Huang, Y., Wang, X., & Chen, X. (2017). Detection of corn and weed species by the combination of spectral, shape and textural features. Sustainability (Switzerland), 9(8). https://doi.org/10.3390/su9081335
Nadya Dwi M. (2021). Klasifikasi Lahan Pertanian Jagung Menggunakan Machine Learning Berdasarkan Data Citra LANDSAT-8. IPB Bogor. https://repository.ipb.ac.id/handle/123456789/110122
Nurlina. (2009). Analisis Spektral Campuran Linier untuk Deteksi Tutupan Lahan di Daerah Perkotaan menggunakan Data Satelit Landsat ETM+ (Studi Kasus Kota Banjarbaru dan Sekitarnya). Jurnal Fisika FlUX. https://ppjp.ulm.ac.id/journal/index.php/f/article/view/3045
Pemerintah Kabupaten Ngawi. (2020). Letak Geografis. https://ngawikab.go.id/letak-geografis/
Phiri, D., Simwanda, M., Salekin, S., Nyirenda, V. R., Murayama, Y., & Ranagalage, M. (2020). Sentinel-2 data for land cover/use mapping: A review. In Remote Sensing (Vol. 12, Issue 14). MDPI AG. https://doi.org/10.3390/rs12142291
Salehi S, H. (2020). Automatic silage maize detection based on phenological rules using Sentinel-2 time-series dataset. International Journal of Remote Sensing, 41(21), 8406–8427. https://doi.org/10.1080/01431161.2020.1779377
Shen, R., Dong, J., Yuan, W., Han, W., Ye, T., & Zhao, W. (2022). A 30 m Resolution Distribution Map of Maize for China Based on Landsat and Sentinel Images. Journal of Remote Sensing, 2022. https://doi.org/10.34133/2022/9846712
Syngenta. (2022). Syngenta Indonesia. https://www.syngenta.co.id/products/search/seed
Tian, J., Wang, L., Yin, D., Li, X., Diao, C., Gong, H., Shi, C., Menenti, M., Ge, Y., Nie, S., Ou, Y., Song, X., & Liu, X. (2020). Development of spectral-phenological features for deep learning to understand Spartina alterniflora invasion. Remote Sensing of Environment, 242. https://doi.org/10.1016/j.rse.2020.111745
Wulandari, B. A., & Muhamad Jaelani, L. (2019). Artikel ini dapat ditemukan di Identifikasi Fase Pertumbuhan Tanaman Jagung Menggunakan Citra SAR Sentinel-1A (Studi Kasus: Kecamatan Gerung, Lombok Barat, NTB). http://jurnal.mapin.or.id/index.php/jpji/issue/archive
Zhong, L., Hu, L., Yu, L., Gong, P., & Biging, G. S. (2016). Automated mapping of soybean and corn using phenology. ISPRS Journal of Photogrammetry and Remote Sensing, 119, 151–164. https://doi.org/10.1016/j.isprsjprs.2016.05.014
DOI: http://dx.doi.org/10.12962/j24423998.v19i1.18749
Refbacks
- There are currently no refbacks.
Geoid Journal of Geodesy and Geomatics by Department of Geomatics Engineering - ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.