Analisis Variasi Temporal-Spasial Nilai Zenith Tropospheric Delay Menggunakan Data CORS di Provinsi Jawa Timur

Norma Aji Cemara Mannani, Eko Yuli Handoko

Abstract


Global Navigation Satellite System (GNSS) semakin dikembangkan sebagai sistem penginderaan jauh atmosfer, salah satunya melalui perhitungan Zenith Tropospheric Delay (ZTD). Seiring dengan pengembangan stasiun CORS, maka mendorong dilakukannya penelitian mengenai ZTD dengan data yang kontinyu dan resolusi spasial yang baik karena letak stasiun CORS tersebar merata. Penelitian ini bertujuan menganalisis karakteristik variasi spasial dan temporal dari salah satu komponen ZTD, yaitu Zenith Wet Delay (ZWD). Studi kasus penelitian ini adalah Provinsi Jawa Timur dengan menggunakan 16 stasiun CORS. Selain data CORS, digunakan pula data meteorologi dari empat stasiun milik BMKG di Jawa Timur yang digunakan sebagai data pembanding. Perhitungan nilai ZTD dan ZWD menggunakan perangkat lunak GIPSY 6.4. Nilai ZWD divisualisasikan dengan gridding metode krigging dengan ukuran grid 0,25˚ × 0,25˚. Terdapat pola penurunan pada nilai trend ZWD rata-rata sebesar sekitar 1,628 mm/tahun. Karakteristik variasi spasial dan temporal dari nilai ZWD dipengaruhi beberapa faktor, di antaranya angin monsun Asia dan Australia yang menyebabkan adanya musim, fenomena global seperti El Nino dan La Nina, intensitas curah hujan, kondisi meteorologi lokal seperti suhu dan kelembaban, cuaca, dan topografi dari stasiun.

Global Navigation Satellite System (GNSS) are being developed as an atmospheric remote sensing system through the calculation of ZTD. The development of CORS station encourages research investigations about Zenith Tropospheric Delay (ZTD) with continuous data and good spatial resolution. This research studies about characteristics of spatial and temporal variation from ZWD in East Jawa. The case study in East Jawa Province Using 16 CORS Station. Meteorological data from four BMKG’s stations are used as comparison data. ZTD and ZWD value from CORS data are calculated using GIPSY 6.4 Software. ZWD values are gridded using the kriging method with the size of the grids is 0,25 x 0,25. ZWD value comparison from CORS and meteorology data have a strong correlation with coefficient value is 0,712. The mean ZWD trend is decreasing by about 1,628 mm/yr. Characteristics of spatial and temporal variations of the ZWD value influenced by monsoon Asia-Australian which cause dry and rainy seasons, global phenomena such as El Nino and La Nina, rainfall, local meteorological conditions such as temperature and humidity, weather, and topography of the stations.

Keywords


CORS; GNSS; Variasi; ZTD; ZWD

Full Text:

PDF

References


Abdelfatah, M. A., Mousa, A., Salama, I., & El-Filky, G. (2009). Assessment of Tropospheric Delay Models in GPS Baseline Data Analysis; a Case Study of a Regional Network at Upper Egypt. Mesir: Al-Azhar University.

Ardila, Y., & Sibarani, R. (2016). Analisis Kejadian El Nino dan Pengaruhnya Terhadap Intensitas Curah Hujan di Wilayah Jabodetabek (Studi Kasus : Periode Puncak Musim Hujan Tahun 2015/2018). Jurnal Sains & Teknologi Modifikasi Cuaca, No. 2, Vol. 17, hal. 65-73.

Badan Pusat Statistika (BPS). (2018). Jumlah Curah Hujan Menurut Bulan di Provinsi Jawa Timur, 2006-2017. https://jatim.bps.go.id/dynamictable/2018/01/23/274/jumlah-curah-hujan-menurut-bulan-di-provinsi-jawa-timur-2006-2016.html. diakses pada tanggal 11 Juni, 2020.

Bai, Z. (2004). Near-Real-Time GPS Sensing of Atmosphere Water Vapour. Queensland: Coorporative Research Centre for Satellite Systems.

Baldysz, Z., Nykiel, G., Figurski, M., Szafranek, K., & Kroszczynski, K. (2015). Investigation of the 16-Year and 18-year ZTD Time Series Derived from GPS Data Processing. Acta Geophysica, 1103-1125.

Bevis, M., & Businger, S. C. (1994). GPS Meteorology : Mapping Zenith Wet Delays onto Precipitable Water. Journal of Applied Metorology, Vol. 33, hal. 379-386.

Hardian, S. (2016). Sekilas Sistem Monsun Asia – Australia. Bandung: Institut Teknologi Bandung.

Jin, S., Jong Uk, P., Jung Ho, C., & Pil Ho, P. (2007). Seasonal Variability of GPS-Derived Zenith Tropospheric Delay (1994-2006) and Climate Implication. Journal of Geophysical Research, Vol. 112, hal. 1-11.

Khaniani, A. S., & Ghahremani, M. (2018). Estimation Of GPS Tropospheric Delays Using Different Data Processing Strategies In Iran. Analysis Of Geophysics, No. 6, Vol. 61, hal. 1-15.

Mitchell, J. M. (1976). An Overview of Climatic Variability and Its Causal. Quaternary Research, 6, 481-493.

Mousa, A. E.-K., Aboualy, N., Sharaf, M., Zahra, H., & Darrag, M. (2016). Tropospheric Et Delay Estimation Using GNSS: Case Study of a Permanent Network in Egypt. NRIAG Journal Astronomy and Geophysics, hal. 76-86.

Murray, F. W. (1966). On the Computation of Saturation Vapour Pressure. Santa Monica, Calif: the RAND Corporation.

Rakhecha, P. a. (2009). Applied Hydrometeorology. Berlin: Springer-Verlag.

Ramage, C. S. (1971). Monsoon Meteorology. New York: Academic Press.

Saastamoinen. (1972). Contribution to the Theory of Atmospheric Refraction. Bulletin Geodesique, Vol. 107, hal. 13-34.

Smith, E. K., & Weintraub, S. (1953). The Constants in The Equation for Atmospheric Refractive Index at Radio Frequencies. IRE, Vol. 41, hal. 1035-1037.

Susilo. (2012). Pemantauan Precipitable Water Vapor (PWV) di Wilayah Jawa Barat menggunakan GPS Kontinyu. Tesis. Program Studi Teknik Geodesi dan Geomatika, Institut Teknologi Bandung, Bandung.

Wedyanto, K., Tanuwijaya, Z., Pramansyah, A., & Wijaya, D. (2018). Korelasi Musiman Antara Zenith Wet Delay (ZWD) Dan Debit Sungai Di Das Cikapundung Hulu, Kawasan Bandung Utara, Jawa Barat. Seminar Nasional Geomatika , hal. 741-750.




DOI: http://dx.doi.org/10.12962/j24423998.v16i2.7420

Refbacks

  • There are currently no refbacks.


Creative Commons License
Geoid Journal of Geodesy and Geomatics by Department of Geomatics Engineering - ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.