Convergence and Completeness in L_2 (P) with respect to a Partial Metric
Abstract
Keywords
Full Text:
PDFReferences
S. G. Matthews, “Partial metric topology,” Annals of the New York Academy of Sciences, vol. 728, no. 1, pp. 183–197, 1994.
R. Heckmann, “Approximation of metric spaces by partial metric spaces,” Applied Categorical Structures, vol. 7, pp. 71–83, 1999.
P. Waszkiewicz, “Partial metrisability of continuous posets,” Mathematical Structures in Computer Science, vol. 16, no. 2, pp. 359–372, 2006.
S. Han, J. Wu, and D. Zhang, “Properties and principles on partial metric spaces,” Topology and its Applications, vol. 230, pp. 77–98, 2017.
J. Wu and Y. Yue, “Formal balls in fuzzy partial metric spaces,” Iranian Journal of Fuzzy Systems, vol. 14, no. 2, pp. 155–164, 2017.
U. Kadak, F. Basar, and H. Efe, “Some partial metric spaces of sequences and functions,” Gen. Math. Notes, vol. 19, no. 2, 2013.
R. D. Kopperman, S. Matthews, and H. Pajoohesh, “Partial metrizability in value quantales,” Applied General Topology, vol. 5, no. 1, pp. 115–127, 2004.
A. Esi, E. Hanac¸, and A. Esi, “Difference convergence on partial metric space,” in AIP Conference Proceedings, vol. 2086, no. 1. AIP Publishing LLC, 2019, p. 030016.
G. Teschl, “Topics in real and functional analysis,” unpublished, available online at http://www. mat. univie. ac. at/˜ gerald, 1998.
R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval analysis. SIAM, 2009.
DOI: http://dx.doi.org/10.12962/j24775401.v9i1.15064
Refbacks
- There are currently no refbacks.
View My Stats
International Journal of Computing Science and Applied Mathematics by Pusat Publikasi Ilmiah LPPM, Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/ijcsam.