The Aplication of Max-Plus Algebra to Determine The Optimal Time of Ikat Kupang Woven Production

Lusiana Prastiwi, Yuni Listiana

Abstract


The problem of scheduling is a problem that becomes part of project management that aims to plan the implementation of activities in a project in a structured manner with a clear time limit. Kupang ikat woven is an Indonesian handicraft that the process of making it through the stages of structured activities with a long time limit. Thus, in this study we intend to estimate the optimal time required to manufacture the Kupang ikat woven by applying the Max-Plus algebra method. In this case, the linkages between activities within a project can be transformed into a matrix form which can be analyzed using Max-Plus algebra method. This matrix will be applied in the calculation to get the solution needed in project scheduling, in this case is the optimum time required of making Kupang ikat woven.

Keywords


Max-Plus Algebra; Scheduling Projects; Optimum time; Kupang Ikat Woven

Full Text:

PDF

References


L. Prastiwi, “Penerapan metode jalur kritis atau critical path method (cpm) penentuan waktu optimal dalam proses pembuatan kerajinan tenun ikat tradisional kupang ntt,” Jurnal Ilmiah Soulmath, vol. 4, no. 5, 2017.

B. Setiawan and R. Suwarningdyah, “Strategi pengembangan tenun ikat kupang provinsi nusa tenggara timur,” Jurnal Pendidikan dan Kebudayaan, vol. 20, no. 3, pp. 353–367, 2014.

Subiono, Aljabar Max-Plus Dan Terapannya. Jurusan Matematika Institut Teknologi Sepuluh Nopember, 2015.




DOI: http://dx.doi.org/10.12962/j24775401.v3i2.2317

Refbacks

  • There are currently no refbacks.



View My Stats


Creative Commons License
International Journal of Computing Science and Applied Mathematics by Pusat Publikasi Ilmiah LPPM, Institut Teknologi Sepuluh Nopember is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/ijcsam.