Pemodelan Faktor – Faktor yang Mempengaruhi Kasus Pneumonia pada Balita di Provinsi Jawa Barat dengan Metode Geographically Weighted Generalized Poisson Regression

Vergilia Agam Saputri, Purhadi Purhadi

Abstract


Acute infection of lung tissue that can be caused by various microorganisms, namely fungi, viruses, and bacteria is called pneumonia. Pneumonia is the leading cause of death in children worldwide. West Java is in the top three of the number of deaths due to pneumonia in children under five in Indonesia and ranks 1st in the number of pneumonia sufferers in children under five. In solving this case, it is necessary to model with spatial effects because it is necessary to pay attention to geographical conditions in West Java, namely the GWGPR method. The highest number of pneumonia cases, as many as 10818 cases, was in Cirebon Regency while the lowest number of cases was in Banjar City as many as 573 cases. The best modeling results from the minimum AICc criteria of 483.98 are using the GWGPR method with exposure that forms two groups of districts/cities based on variables that have a significant effect on cases of pneumonia in children under five in all districts/cities, namely the percentage of vitamin A administration and the percentage of clean-living behavior and healthy.

Keywords


Exposure; GWGPR; West Java; Toddler Pneumonia

Full Text:

PDF

References


WHO, "Pneumonia," 2 Agustus 2019. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/pneumonia.

Kompas, "WHO," 9 November 2020. [Online]. Available: https://www.kompas.com/.

Dinas Kesehatan Provinsi Jawa Barat, "Profil Kesehatan Provinsi Jawa Barat Tahun 2019," Dinas Kesehatan, Jawa Barat, 2019.

E. N. Fatimah, I. K. G. Sukarsa and M. Susilawati, "Pemodelan Risiko Penyakit Pneumonia Pada Balita di Provinsi Jawa Timur dengan Pendekatan Geographically Weighted Logistic Regression," E-Jurnal Matematika, pp. 31-26, 2015.

N. Fadhilah, "Geographically Weighted Regression dan Spatial Pattern Analysis untuk Pemodelan Kejadian Penyakit Malaria dan Faktor yang Mempengaruhi Di Provinsi Papua," Institut Teknologi Sepuluh Nopember, Surabaya, 2015.

R. E. Walpole, Pengantar Statistika edisi ke -3, Jakarta: PT. Gramedia Pustaka Umum, 1995.

E. U. L. Fitri, "Pemodelan Faktor-Faktor Yang Mempengaruhi Jumlah Kasus Tuberkulosis di Jawa Timur Menggunakan Metode Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression," Institut Teknologi Sepuluh Nopember, Surabaya, 2017.

M. Z. Al Fikri, "Pemodelan Faktor - Faktor Yang Mempengaruhi Jumlah Kasus Demam Berdarah Dengue di Jawa Barat Menggunakan Metode Geographically Weighted Generalized Poisson Regression dan Geographically Weighted Negative Binomial Regression," Institut Teknologi Sepuluh Nopember, Surabaya, 2021.

C. W. Crisana, "Analisis Perbandingan Metode Klasifikasi Autocorelation Based Regioclassification (ACRC) dan Non-ACRC untuk Data Spasial," FMIPA IPB, Bogor, 2014.

D. C. Montgomerry, Introduction to Linear Regression Analysis, Canada: John Wiley & Sons, 2012.

A. Agresti, An Introduction To Categorical Data Analysis, Florida: A John Wiley & Sons, Inc, 2019.

D. N. Sari, "Model Geographically Weighted Multivariate Zero Inflated Generalized Poisson Regression," Institut Teknologi Sepuluh Nopember, Surabaya, 2020.

A. C. Cameron and P. K. Trivedi, "Regression-Based Tests for Overdispersion in the Poisson Model," Journal of Econometrics, pp. 347-364, 1990.

A. M. Law and W. D. Kelton, Simulation Modelling $ Analysis, New York: McGraw-Hill, Inc., 2000.

C. I. G. J. V. Chasco, "Geographically Weighted Ordinal Logistic Regression Model.," International Journal of Mathematics and Computation, 2012.

R. A. Johnson and D. W. Wichern, Applied Multivariate Statistical Analysis Sixth Edition, Harlow: Pearson Education International, 2013.

Y. Setyorini, A. Melliana, H. Eko, S. Rosi and Purhadi, "The Comparison Of Generalized Poisson Regression And Negative Binomial Reression Methods In Overcoming Overdispersion," International Journal of Scientific & Technology, 2013.

Triyanto, Purhadi, B. W. Otok and S. W. Purnami, "Parameter Estimation of Geographically Weigthed Multivariate Poisson Regression," Applied Mathematical Sciences, pp. 4081-4093, 2015.

T. Nakaya, A. S. Fotheringham, C. Brunsdon and M. Charlton, "Geographically weighted Poisson regression for disease association mapping," Statistics In Medicine, pp. 2695-2717, 2005.

M. Adryanta and P. , "Analisis Metode Geographically Weighted Generalized Poisson Regression untuk Pemodelan Faktor yang Mempengaruhi Jumlah Kematian Anak di Provinsi Jawa Timur," Jurnal Sains dan Seni ITS, pp. 2337-3520, 2019.

S. W. Ekaputri, "Pemodelan Faktor yang Mempengaruhi Jumlah Perempuan Menikah Dini di Provinsi Jambi, Riau, dan Sumatera Barat dengan Pendekatan Geographically Weighted Generalized Poisson Regression," Institut Teknologi Sepuluh Nopember, Surabaya, 2020.

A. S. Fotheringham, C. Brunsdon and M. Charlton, Geographically Weighted Regression, United Kingdom: John Wiley & Sons, LTD, 2002.

N. H. Draper and H. Smith, Applied Regression Analysis, New York: John Wiley & Sons, 1996.

I. Renika, "Identifikasi Faktor Risiko Ekstrinsik Pneumonia pada Balita di Pulau Jawa Tahun 2018 Menggunakan Geographically Weighted Regression," Universitas Muhammadiyah Surakarta, Surakarta, 2021.




DOI: http://dx.doi.org/10.12962/j27213862.v5i2.12619

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats