Peningkatan kualitas layanan perbankan digital melalui pengelompokan tweet menggunakan DBSCAN

Syeni Agustin Ningtias, Alfisyahrina Hapsery

Abstract


Digitalization in the banking sector allows customers to obtain banking services independently without having to come directly to the bank. Digital banking services enable customers to obtain information, communicate, register, open accounts, banking transactions and close accounts, including obtaining other information and transactions outside of banking products. Banking is intensively providing services or promotions through social media, one of which is by using Twitter social media. Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method. DBSCAN clustering is done by combining the Eps and MinPts values to produce the highest silhouette coefficient. The highest silhouette coefficient values from BRI, Mandiri and BCA banking service tweets produce 33, 14, and 39 clusters, respectively, with different Eps and MinPts values. Based on the results of wordcloud, it shows that banking services need to be improved in terms of checking DM on accounts, customers ask the admin to immediately respond to complaints related to ATM cards, disruptions to mobile banking and some say thank you for the services that have been provided.

Keywords


DBSCAN; Perbankan; Text Clustering; Twitter; Silhouette

Full Text:

PDF

References


Alfarisi. (2017). Data Prepocessing - Konsep Pembelajaran Data Mining. Diakses 23 Desember 2020 dari https://steemit.com/education/@alfarisi/data-preprocessing-konsep-pembelajaran-data-mining

Astutik, D. K. A., Indrasetianingasih, A., dan Fitriani, F. (2022). Penerapan Text Mining pada Analsiis Sentimen Pengguna Twitter Layanan Transportasi Online Menggunakan Metode Density Based Spatial Clustering of Applications With Noice (DBSCAN) dan K-Menas. J- Statistika, Universitas PGRI Adi Buana Surabaya, Vol 15, No 1. 184-189.

Ariadi, D. & Fithriasari, K. (2015). Klasifikasi Berita Indonesia Menggunakan Bayesian Classification dan Support Vector Machine dengan Confix Stripping Stemmer. Jurnal Sains dan Seni ITS, Vol. 4, No. 2.

Arsih,N. (2016). Metode Pengclusteran Berbasis Densitas Menggunakan Algoritma DBSCAN. Prosiding Statistika,Vol. 2, Hal. 153-163.

Detikfinance. (2020). BRI Naik Peringkat di Daftar 1.000 World banks, Nomor 1 diRI. Diakses 17 Desember dari:https://finance.detik.com/moneter/d-5114772/bri-naik-peringkat-di-daftar-1000-world-banks-nomor-1-di-ri.

Feldman, R., & Sanger, J. (2007). Text Mining Handbook : Advanced Approaches in Analyzing Unstructured Data. New York: Cambridge University Press

Fitriani, F. (2016). Pengelompokkan data Angin Puting Beliung dengan Menggunakan LVQ. Wahana Vol 6 No 1. Universitas PGRI Adi Buana Surabaya.

Hermanto, E. M.P. (2019). Penerapan Entropy Weighting K-Means (EW K-Means) pada Pengelompokan Kabupaten/Kota di Jawa Timur berdasarkan Indikator Mortalitas Tahun 2014. Prisma, Prossiding Seminar Nasional Matematika. Hal 841-847.

Nasution, M.I.F. & Hidayati,T. (2020). Pengaruh Fitur Chatbot Aisyah (Asisten Interaktif Mandiri Syariah) Terhadap Kualitas Pelayanan Nasabah. Jurnal BanqueSyar'i, Vol. 6, Hal 81-88.

Otoritas Jasa Keuangan. (2020). Laporan Publikasi Bank Umum Konvensional. Diakses 5 Januari dari https://www.ojk.go.id/id/kanal/perbankan/data-dan-statistik/laporan-keuangan-perbankan/default.aspx.

Siregar, A. M., & Puspabhuana, A., (2002). Data Mining: Pengolahan Data Menjadi Informasi dengan RapidMiner. Sukoharjo: CV Kekata Group.

Sulistyawan, S., Hapsery, A., Arifahanum, L. J. A., (2021). Perbandingan Metode Optimasi untuk Pengelompokan Provinsi Berdasarkan Sektor Perikanan di Indonesia (Studi Kasus Dinas Kelautan dan Perikanan Indonesia). Jurnal Gaussian Vol 10. No 1., Hal. 76-84.

Tan, H. P., Plowman, D., & Hancock, P. (2007). Intellectual Capital and Financial Returns of Companies. Journal of Intellectual Capital, Vol. 8, Hal 76-91.

Yusril, A,N. (2020). Implementasi Text Mining untuk Advertising dengan Menggunakan Metode K-Means Clustering pada Data Tweets Gojek Indonesia.Sistemasi, Hal. 586-596

Narsih, A. (2016). Metode Pengclusteran Berbasis Densitas Menggunakan Algoritma DBSCAN. Prosiding Statistika,Vol. 2, Hal. 153-163.




DOI: http://dx.doi.org/10.12962/j27213862.v6i1.12839

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats