Analisis Model Cox Proportional Hazard dan Regresi Logistik sebagai Upaya Pencegahan Covid-19 di Kota Palopo

Avini Avini, Krisna Wansi Patunduk, Sumarni Sumarni, Harbianti Harbianti, Ananda Pratiwi, Rahmat Hidayat

Abstract


This study focused on Covid-19 patients in Palopo City. This study aims to model the recovery time of Covid-19 patients in the city of Palopo. The variables used are factors that are thought to affect the survival period of Covid-19 patients. The instrument used in this study is secondary data obtained from the Palopo City Health Office. The data analysis used in this study is the Cox proportional hazard method to determine the relationship between the dependent variable and the independent variable and the Logistics Regression method, which is the analytical method used to see the relationship between nominal or ordinal predictor variables as well as intervals or ratios. The results of the research carried out are the Cox proportional hazard method analysis states that the variable fever symptom significantly affects the survival of Covid-19 patients in Palopo city with a significance level of 1 time greater than the other variables. Analysis of the logistic regression method states that the fever symptom variable has a significant effect on the survival time of Covid-19 patients in Palopo City. Furthermore, based on the results of the comparison of AIC values it is stated that the best model that can be used to model the survival rate of covid-19 patients in Palopo city is the cox model proportional hazard.

Keywords


Covid-19; Cox Proportional Hazard; Binary Logistic Regression

Full Text:

PDF

References


A. Aditia, “Covid-19 : Epidemiologi, Virologi, Penularan, Gejala Klinis, Diagnosa, Tatalaksana, Faktor Risiko Dan Pencegahan,” J. Penelit. Perawat Prof., vol. 3, no. November, pp. 653–660, 2021, [Online]. Available: http://jurnal.globalhealthsciencegroup.com/index.php/JPPP%0ACOVID-19

Y. Cheng et al., “Kidney disease is associated with in-hospital death of patients with COVID-19,” Kidney Int., vol. 97, no. 5, pp. 829–838, 2020, doi: 10.1016/j.kint.2020.03.005.

vahid salimian Rizi, “Ce Pte Us Pt,” Mater. Res. Express, pp. 0–12, 2019.

H. Sciences, “済無No Title No Title No Title,” vol. 4, no. 1, pp. 1–23, 2016.

D. Arianto and A. Sutrisno, “Kajian Antisipasi Pelayanan Kapal dan Barang di Pelabuhan Pada Masa Pandemi Covid–19,” J. Penelit. Transp. Laut, vol. 22, no. 2, pp. 97–110, 2021, doi: 10.25104/transla.v22i2.1682.

K. K. R. Indonesia, “Media Informasi Resmi Terkini Penyakit Infeksi Emerging- COVID-19 Update 19 April 2021,” Direktorat Jenderal Pencegahan dan Pengendalian Penyakit, 2021.

S. T. Covid-19, “No TitleData Pantauan Covid-19 Di Sulawesi Selatan.,” 2022.

P. D. O. Davies, “Multi-drug resistant tuberculosis,” CPD Infect., vol. 3, no. 1, pp. 9–12, 2002.

R. Hidayat, M. Sam, R. Y. Wardi, and M. I. Iskandar, “Pemodelan Survival Pasien Covid-19 dengan Hazard Non-Proporsional,” Euler J. Ilm. Mat. Sains dan Teknol., vol. 10, no. 1, pp. 120–130, 2022, doi: 10.34312/euler.v10i1.14744.

R. Hidayat and Y. Hastuti, “Analisis Survival Dalam Memodelkan Siswa Putus Sekolah,” Indones. J. Fundam. Sci., vol. 3, no. 2, p. 123, 2017, doi: 10.26858/ijfs.v3i2.4783.

L. P. Hutahaean, M. A. Mukid, and T. Wuryandari, “Model Regresi Cox Proportional Hazards Pada Data Lama Studi Mahasiswa,” Gaussian, vol. 3, no. 2, pp. 173–181, 2014.

M. Tulong, C. Mongi, and M. Mananohas, “Regresi Logistik Multinomial Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Pilihan Perguruan Tinggi Pada Siswa SMA dan SMK di Pulau Karakelang Kabupaten Kepulauan Talaud,” d’CARTESIAN, vol. 7, no. 2, p. 90, 2018, doi: 10.35799/dc.7.2.2018.21456.

Y. Tampil, H. Komaliq, and Y. Langi, “Analisis Regresi Logistik Untuk Menentukan Faktor-Faktor Yang Mempengaruhi Indeks Prestasi Kumulatif (IPK) Mahasiswa FMIPA Universitas Sam Ratulangi Manado,” d’CARTESIAN, vol. 6, no. 2, p. 56, 2017, doi: 10.35799/dc.6.2.2017.17023.

Rahmadeni and E. Safitri, “Pemodelan Pasien Kanker Payudara Menggunakan Regresi Logistik Biner (Studi Kasus : Pasien Kanker Payudara di Rumah Sakit Umum Daerah,” J. Sains, Teknol. dan Ind., vol. 13, no. 2, pp. 168–173, 2016, [Online]. Available: http://ejournal.uin-suska.ac.id/index.php/sitekin/article/view/1642

J. Zhang et al., “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020.

C. Wei et al., “Clinical characteristics and manifestations in older patients with COVID-19,” BMC Geriatr., vol. 20, no. 1, pp. 1–9, 2020, doi: 10.1186/s12877-020-01811-5.

Z. Zhang, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information ,” no. January, 2020.

Z. Zheng, F. Peng, B. Xu, J. Zhao, H. Liu, and J. Peng, “Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19 . The COVID-19 resource centre is hosted on Elsevier Connect , the company ’ s public news and information,” J. Infect., no. January, 2020.

F. Y. Liu et al., “Evaluation of the Risk Prediction Tools for Patients With Coronavirus Disease 2019 in Wuhan, China: A Single-Centered, Retrospective, Observational Study∗,” Crit. Care Med., vol. 48, no. 11, pp. E1004–E1011, 2020, doi: 10.1097/CCM.0000000000004549.

N. M. Linton et al., “Incubation period and other epidemiological characteristics of 2019 novel coronavirus infections with right truncation: A statistical analysis of publicly available case data,” J. Clin. Med., vol. 9, no. 2, 2020, doi: 10.3390/jcm9020538.

J. Hewitt et al., “The effect of frailty on survival in patients with COVID-19 (COPE): a multicentre, European, observational cohort study,” Lancet Public Heal., vol. 5, no. 8, pp. e444–e451, 2020, doi: 10.1016/S2468-2667(20)30146-8.

E. J. Williamson et al., “Europe PMC Funders Group OpenSAFELY : factors associated with COVID-19 death in 17 million patients,” Nature, vol. 584, no. 7821, pp. 430–436, 2021, doi: 10.1038/s41586-020-2521-4.OpenSAFELY.




DOI: http://dx.doi.org/10.12962/j27213862.v5i2.14064

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats