Aplikasi Pengelompokan Data Runtun Waktu dengan Algoritma K-Medoids

Muhammad Aldani Zen, Sri Wahyuningsih, Andrea Tri Rian Dani

Abstract


The development of information technology will always be accompanied by the storage and accumulation of massive quantities of digital information. Cluster analysis is one of many data processing problems that require the selection of an appropriate algorithm when dealing with large data sets. Cluster analysis is a collection of techniques for dividing a set of observation objects into clusters. Cluster analysis is applicable to time series data, the processing of which differs slightly from that of cross-section data. Clustering time series is a technique for processing multivariable time series data. K-Medoids is the clustering algorithm used for time series clustering. The objective of this study is to obtain optimal K-values in determining the number of clusters based on silhouette coefficients and grouping outcomes using the K-Medoids algorithm. In this study, the dynamic time-warping distance is utilized as the similarity metric. This study provides cooking oil price data for 34 Indonesian provinces from October 2017 to October 2022. The optimal K value is determined for two clusters based on the results of the analysis, with 19 provinces joining cluster 1, where the cluster with cooking oil prices was below cluster 2 and 15 provinces joining cluster 2 which is the cluster with the highest cooking oil prices.

Keywords


Cooking oil; K-Medoids; Silhouette Coefficient; Time Series Clustering

Full Text:

PDF

References


J. Han, M. Kamber, dan J. Pei, “Data Mining: Concept and Techniques Third Edition,” Waltham, 2012.

N. Yudistira, “Peran Big Data dan Deep Learning untuk Menyelesaikan Permasalahan Secara Komprehensif,” EXPERT: Jurnal Manajemen Sistem Informasi dan Teknologi, vol. 11, no. 2, hlm. 78–89, Des 2021.

M. A. A. Riyadi, K. Fithriasari, dan Dwiatmono, “Data Mining Peramalan Konsumsi Listrik dengan Pendekatan Cluster Time Series sebagai Preprocessing,” Jurnal Sains dan Seni ITS, vol. 5, no. 1, hlm. 2337–3520, 2016.

L. Kaufman dan P. J. Rousseeuw, Finding Groups in Data An Introduction to Cluster Analysis. New Jersey: John Wiley & Sons Inc Publication, 1990.

M. A. A. Riyadi, D. S. Pratiwi, A. R. Irawan, dan K. Fithriasari, “Clustering stationary and non-stationary time series based on autocorrelation distance of hierarchical and K-means algorithms,” International Journal of Advances in Intelligent Informatics, vol. 3, no. 3, hlm. 154–160, Nov 2017.

A. T. R. Dani, S. Wahyuningsih, dan N. A. Rizki, “Penerapan Hierarchical Clustering Metode Agglomerative pada Data Runtun Waktu,” Jambura Journal of Mathematics, vol. 1, no. 2, hlm. 64–78, 2019.

R. Novidianto dan A. T. R. Dani, “Analisis Klaster Kasus Aktif COVID-19 Menurut Provinsi di Indonesia Berdasarkan Data Deret Waktu,” Jurnal Aplikasi Statistika & Komputasi Statistik, vol. 12, hlm. 15–24, 2020.

M. I. Rizki, T. A. Taqqiyuddin, dan J. J. Cerelia, “K-Medoids Clustering dengan Jarak Dynamic Time Warping dalam Mengelompokkan Provinsi di Indonesia Berdasarkan Kasus Aktif Covid-19,” PRISMA, Prosiding Seminar Nasional Matematika, vol. 5, hlm. 685–692, 2021.

I. Gunawan, G. Anggraeni, S. Rini, Y. M. Putri, dan Y. K. Zikri, “Klasterisasi provinsi di Indonesia berbasis perkembangan kasus Covid-19 menggunakan metode K-Medoids,” Seminar Nasional Matematika Dan Pendidikan Matematika (5thSENATIK), hlm. 301–306, 2020.

M. A. Zen, S. Wahyuningsih, dan A. T. R. Dani, “Aplikasi Pendekatan Agglomerative Hierarchical Time Series Clustering untuk Peramalan Data Harga Minyak Goreng di Indonesia,” Prosiding Seminar Nasional Official Statistics 2022, hlm. 293–302, 2022.

E. Prasetyo, Konsep dan Aplikasi menggunakan MATLAB. Yogyakarta: Andi Offset, 2012.

P. Montero dan J. A. Vilar, “TSclust: An R Package for Time Series Clustering,” 2014.

V. N. Chotirat dan A. Ratanamahatana, “On Clustering Multimedia Time Series Data Using K-Means and Dynamic Time Warping,” 2007 International Conference on Multimedia and Ubiquitous Engineering, 2007.

B. Wira, A. Endy Budianto, dan A. Sartika Wiguna, “Implementasi Metode K-Medoids Clustering untuk Mengetahui Pola Pemilihan Program Studi Mahasiswa Baru Tahun 2018 di Universitas Kanjuruhan Malang,” Jurnal Terapan Sains & Teknologi, vol. 1, no. 3, hlm. 54–69, 2019.

J. Kim dan J. Kim, “Comparison of time series clustering methods and application to power consumption pattern clustering,” Commun Stat Appl Methods, vol. 27, no. 6, hlm. 589–602, 2020.




DOI: http://dx.doi.org/10.12962/j27213862.v6i2.15864

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats