Penerapan Metode Hybrid Dekomposisi-Arima dalam Peramalan Jumlah Wisatawan Mancanegara
Abstract
Keywords
Full Text:
PDFReferences
V. Desiyanti, Y. D. Rahayu, dan R. Umilasari, “Analisa Perbandingan Metode DMA dan DES ( HOLT ) Dalam Peramalan Harga GKP Ditingkat Petani,” vol. 3, no. 5, hal. 552–559, 2022.
F. Kusuma, M. Ahsan, dan S. Syahminan, “Prediksi Jumlah Penduduk Miskin Indonesia menggunakan Metode Single Moving Average dan Double Moving Average,” J. Inform. dan Rekayasa Perangkat Lunak, vol. 3, no. 2, hal. 105, 2021, doi: 10.36499/jinrpl.v3i2.4594.
K. W. Hidayat, D. Yuniarti, dan M. Siringoringo, “Peramalan Indeks Harga Konsumen Kota Samarinda dengan Metode Double Moving Average,” hal. 143–149, 2019.
V. Gaspersz, Production Planning and Inventory Control. Jakarta: Gramedia Pustaka Utama, 2005.
E. Herjanto, Manajemen Operasi Edisi Ketiga. Jakarta:Grasindo, 2015.
G. E. P. Box, G. M. Jenkins, dan G. C. Reinsel, Time series analysis : forecasting and control, 4th ed. ed. (Wiley series in probability and statistics).
I. Khandelwal, R. Adhikari, dan G. Verma, “Time series forecasting using hybrid arima and ann models based on DWT Decomposition,” Procedia Comput. Sci., vol. 48, no. C, hal. 173–179, 2015, doi: 10.1016/j.procs.2015.04.167.
Ü. Ç. Büyükşahin dan Ş. Ertekin, “Improving forecasting accuracy of time series data using a new ARIMA-ANN hybrid method and empirical mode decomposition,” Neurocomputing, vol. 361, hal. 151–163, 2019, doi: 10.1016/j.neucom.2019.05.099.
U. Hanum dan dewi murni, “Peramalan Jumlah Pengunjung Objek Wisata Waterboom Kota Sawahlunto Tahun 2019 Menggunakan Metode Sarima,” J. Math. UNP, vol. 4, no. 3, hal. 86–91, 2019.
M. F. S dan Z. Rais, “MODEL HIBRIDA DEKOMPOSISI-ARIMA UNTUK PERAMALAN INFLASI DI KOTA MAKASSAR,” vol. 3, no. 2, hal. 97–101, 2021, doi: 10.35580/variansiunm23889.
M. R. Ramadhan dan J. Nugraha, “Analisis Peramalan Jumlah Kedatangan Pesawat Internasional di Bandar Udara Soekarno-Hatta dengan Menggunakan Metode Dekomposisi-Arima: Analisis …,” Emerg. Stat. Data Sci. …, vol. 1, no. 1, hal. 159–169, 2023.
Aswi dan Sukarna, Analisis Deret Waktu. Makassar: Andira Publisher, 2017.
K. R. Tunjungsari, “Karakteristik dan Persepsi Wisatawan Mancanegara di Kawasan Sanur dan Canggu, Bali,” J. Pariwisata Terap., vol. 2, no. 2, hal. 108, 2018, doi: 10.22146/jpt.43178.
D. Ruhiat, E. S. Masrulloh, dan F. Azis, “Forecasting Data Time Series Berpola Musiman Menggunakan Model SARIMA ( Studi Kasus : Sungai Cipeles-Warungpeti ),” vol. 2, hal. 39–50, 2022.
P. G. Zhang, “Time series forecasting using a hybrid ARIMA and neural network model,” Neurocomputing, vol. 50, hal. 159–175, 2003, doi: 10.1016/S0925-2312(01)00702-0.
C. S. Luo, L. Y. Zhou, dan Q. F. Wei, “Application of SARIMA model in cucumber price forecast,” Appl. Mech. Mater., vol. 373–375, hal. 1686–1690, 2013, doi: 10.4028/www.scientific.net/AMM.373-375.1686.
J. E. Hanke dan D. Wichern, Business Forecasting, 9th Editio. United States of America: Pearson, 2014.
C. V. Hudiyanti, F. A. Bachtiar, dan B. D. Setiawan, “Perbandingan Double Moving Average dan Double Exponential Smoothing untuk Peramalan Jumlah Kedatangan Wisatawan Mancanegara di Bandara Ngurah Rai,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 3, no. 3, hal. 2667–2672, 2019.
DOI: http://dx.doi.org/10.12962/j27213862.v7i1.18738
Refbacks
- There are currently no refbacks.
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.
ISSN: 0216-308X
e-ISSN: 2721-3862
View My Stats