Determinants of PM2.5 Concentration in DKI Jakarta Province: A VAR Model Approach

Bertolomeus Laksana Jayadri, Mafitroh Pangastuti, Muh Farhan, Fitri Kartiasih

Abstract


Air pollution in the DKI Jakarta Province is a serious issue as it is related to public health and environmental concerns. Therefore, this research aims to analyze the causality of PM2.5 concentration with meteorological factors such as air temperature, humidity, rainfall, and wind speed. The data source used is from the MERRA-2 satellite, which provides information at a spatial resolution of 0.5° × 0.625°. The data covers the period from January 1, 1980, to November 1, 2023, with hourly time intervals. The research variables involve PM2.5 concentration as the response variable, as well as predictor variables such as air temperature, humidity, rainfall, and wind speed. The analytical method employed is the Vector Autoregressive (VAR) approach, as all variables are stationary at the level.  The constructed VAR model tends to indicate that meteorological variables have a low explanatory power for PM2.5 concentration, while changes in PM2.5 concentration itself have sustained impacts in both the short and long term. This suggests that the fluctuations in PM2.5 concentration in DKI Jakarta Province are not significantly influenced by meteorological factors.


Keywords


PM2.5, Jakarta, Vector Autoregressive, MERRA-2

Full Text:

PDF

References


PP No. 41, “PP No. 41/1999 Tentang Pengendalian Pencemaran Udara,” Yayasan Terumbu Karang Indones., no. 41, pp. 1–34, 1999.

World Health Organization, “Air Pollution,” 2023. .

W. Pribadi and F. Kartiasih, “Environmental Quality and Poverty Assessment in Indonesia,” J. Pengelolaan Sumberd. Alam dan Lingkung. (Journal Nat. Resour. Environ. Manag., vol. 10, no. 1, pp. 89–97, 2020, doi: 10.29244/jpsl.10.1.89-97.

F. Kartiasih and A. Setiawan, “Aplikasi Error Correction Mechanism dalam Analisis Dampak Pertumbuhan Ekonomi, Konsumsi Energi dan Perdagangan Internasional Terhadap Emisi CO2 di Indonesia,” Media Stat., vol. 13, no. 1, pp. 104–115, 2020, doi: 10.14710/medstat.13.1.104-115.

R. Sun, Y. Zhou, J. Wu, and Z. Gong, “Influencing factors of PM2.5 pollution: Disaster points of meteorological factors,” Int. J. Environ. Res. Public Health, vol. 16, no. 20, 2019, doi: 10.3390/ijerph16203891.

Y. Zhang and W. Jiang, “Pollution characteristics and influencing factors of atmospheric particulate matter (PM2.5) in Chang-Zhu-Tan area,” IOP Conf. Ser. Earth Environ. Sci., vol. 108, no. 4, 2018, doi: 10.1088/1755-1315/108/4/042047.

BLH DKI Jakarta, “Menuju Udara Bersih Jakarta,” Environ. Agency DKI Jakarta, vital Strateg., pp. 1–29, 2019.

G. Syuhada et al., “Impacts of Air Pollution on Health and Cost of Illness in Jakarta, Indonesia,” Int. J. Environ. Res. Public Health, vol. 20, no. 4, 2023, doi: 10.3390/ijerph20042916.

IQAir, “Kualitas Udara di Jakarta,” IQAir, 2023. .

P. Thangavel, D. Park, and Y. C. Lee, “Recent Insights into Particulate Matter (PM2.5)-Mediated Toxicity in Humans: An Overview,” Int. J. Environ. Res. Public Health, vol. 19, no. 12, 2022, doi: 10.3390/ijerph19127511.

Y. F. Xing, Y. H. Xu, M. H. Shi, and Y. X. Lian, “The impact of PM2.5 on the human respiratory system,” J. Thorac. Dis., vol. 8, no. 1, pp. E69–E74, 2016, doi: 10.3978/j.issn.2072-1439.2016.01.19.

Departement of Health, “Particle Pollution and Health,” New York State, 2023. .

EPA, “Health and Environmental Effects of Particulate Matter (PM),” United States Enviromental Protection Agency, 2023. .

X. Zhao, Y. Sun, C. Zhao, and H. Jiang, “Impact of Precipitation with Different Intensity on PM2.5 over Typical Regions of China,” Atmosphere (Basel)., vol. 11, no. 9, p. 906, Aug. 2020, doi: 10.3390/atmos11090906.

T. Istiana et al., “Causality Analysis of Air Quality and Meteorological Parameters for PM2.5 Characteristics Determination: Evidence from Jakarta,” Aerosol Air Qual. Res., vol. 23, no. 9, pp. 1–18, 2023, doi: 10.4209/aaqr.230014.

Q. Yang, Q. Yuan, T. Li, H. Shen, and L. Zhang, “The relationships between PM2.5 and meteorological factors in China: Seasonal and regional variations,” Int. J. Environ. Res. Public Health, vol. 14, no. 12, 2017, doi: 10.3390/ijerph14121510.

Z. Chen et al., “Understanding meteorological influences on PM<sub>2.5</sub> concentrations across China: a temporal and spatial perspective,” Atmos. Chem. Phys., vol. 18, no. 8, pp. 5343–5358, Apr. 2018, doi: 10.5194/acp-18-5343-2018.

W. J. Requia, I. Jhun, B. A. Coull, and P. Koutrakis, “Climate impact on ambient PM2.5 elemental concentration in the United States: A trend analysis over the last 30 years,” Environ. Int., vol. 131, no. May, p. 104888, 2019, doi: 10.1016/j.envint.2019.05.082.

J. Wang, J. Han, T. Li, T. Wu, and C. Fang, “Impact analysis of meteorological variables on PM2.5 pollution in the most polluted cities in China,” Heliyon, vol. 9, no. 7, p. e17609, 2023, doi: 10.1016/j.heliyon.2023.e17609.

N. Morshed and M. R. Hossain, “Causality analysis of the determinants of FDI in Bangladesh: fresh evidence from VAR, VECM and Granger causality approach,” SN Bus. Econ., vol. 2, no. 7, pp. 1–28, 2022, doi: 10.1007/s43546-022-00247-w.

Y. Wang, J. Wang, and G. Tao, “Analysis of Factors Influencing PM2.5 in Beijing: A Microcosmic and Dynamic Perspective for Sustainable Development,” Iopscience.Iop.Org, vol. 8, no. February 2018, pp. 68–74, 2017, doi: 10.1088/1755-1315.

M. Thoriq Maulana, M. Hilmi Habibullah, Sunandar, N. Sholihah, M. Ainul Rifqi L. P., and F. Fahrudin, “Laporan Akhir Pemantauan Kualitas Udara,” Lap. Akhir, vol. 1, no. 201310200311137, pp. 1–145, 2021.

Vaishali, G. Verma, and R. M. Das, “Influence of Temperature and Relative Humidity on PM2.5 Concentration over Delhi,” Mapan - J. Metrol. Soc. India, vol. 38, no. 3, pp. 759–769, 2023, doi: 10.1007/s12647-023-00656-8.

Z. Chen et al., “Influence of meteorological conditions on PM2.5 concentrations across China: A review of methodology and mechanism,” Environ. Int., vol. 139, no. April, p. 105558, 2020, doi: 10.1016/j.envint.2020.105558.

J. Zhang, Z. Zhou, C. Wang, K. Xue, and Y. Liu, “Research on the Influence of Indoor Relative Humidity on PM2 . 5 Concentration in Residential Buildings Research on the Influence of Indoor Relative Humidity on PM2 . 5 Concentration in Residential Buildings,” 2019, doi: 10.1088/1757-899X/585/1/012086.

R. Fujino and Y. Miyamoto, “PM2.5 decrease with precipitation as revealed by single-point ground-based observation,” Atmos. Sci. Lett., vol. 23, no. 7, pp. 1–7, 2022, doi: 10.1002/asl.1088.

Y. Sun et al., “Distinct Impacts of Light and Heavy Precipitation on PM2.5 Mass Concentration in Beijing,” Earth Sp. Sci., vol. 6, no. 10, pp. 1915–1925, 2019, doi: 10.1029/2019EA000717.

W. Zhao et al., “Impact of Meteorological Factors on the Ozone Pollution in Hong Kong,” Huanjing Kexue/Environmental Sci., vol. 40, no. 1, pp. 55–66, 2019, doi: 10.13227/j.hjkx.201803151.

B. Zhang et al., “Influences of wind and precipitation on different-sized particulate matter concentrations (PM2.5, PM10, PM2.5–10),” Meteorol. Atmos. Phys., vol. 130, no. 3, pp. 383–392, 2018, doi: 10.1007/s00703-017-0526-9.

BPS, Provinsi DKI Jakarta Dalam Angka 2023. Jakarta: BPS, 2023.

R. Gelaro et al., “The modern-era retrospective analysis for research and applications, version 2 (MERRA-2),” J. Clim., vol. 30, no. 14, pp. 5419–5454, 2017, doi: 10.1175/JCLI-D-16-0758.1.

A. Sayeed, P. Lin, P. Gupta, N. N. M. Tran, V. Buchard, and S. Christopher, “Hourly and Daily PM2.5 Estimations Using MERRA-2: A Machine Learning Approach,” Earth Sp. Sci., vol. 9, no. 11, pp. 1–16, 2022, doi: 10.1029/2022EA002375.

G. Xu et al., “Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China,” Aerosol Air Qual. Res., vol. 17, no. 3, pp. 741–751, 2017, doi: 10.4209/aaqr.2016.09.0406.

A. T. Basuki and N. Prawoto, Analisis Regresi dalam Penelitian Ekonomi & Bisnis: Dilengkapi Aplikasi SPSS & Eviews. Depok: Rajawali Press, 2016.

Y. Farida and L. Wulandari, “Forecasting Rainfall at Surabaya using Vector Autoregressive (VAR) Kalman Filter Method,” no. January 2018, pp. 342–349, 2020, doi: 10.5220/0008521703420349.

F. F. Roman and Kartiko, “Penerapan Kausalitas Granger dan Kointegrasi Johansen Trace Statistic Test untuk Indeks Pembangunan Manusia terhadap Pertumbuhan Ekonomi, Inflasi dan Kemiskinan di Nusa Tenggara Timur,” J. Stat. Ind. dan Komputasi, vol. 05, no. 2, pp. 73–83, 2020.

I. Sulistiana, “Model Vector Auto Regression (Var) and Vector Error Correction Model (Vecm) Approach for Inflation Relations Analysis, Gross Regional Domestic Product (Gdp), World Tin Price, Bi Rate and Rupiah Exchange Rate,” Integr. J. Bus. Econ., vol. 1, no. 2, pp. 17–32, 2017, doi: https://doi.org/10.5281/zenodo.1147673.

R. A. Shcochrul, Cara Cerdas Menguasai Eviews. Jakarta: Salemba Empat, 2011.

S. Salsabila, D. A. Kusuma, and B. N. Ruchjana, “Penerapan Model Vector Autoregressive Orde Tiga Pada Data Suhu Udara Rata-Rata Di Kabupaten Malang Dan Kabupaten Sidoarjo,” Teorema Teor. dan Ris. Mat., vol. 7, no. 2, p. 247, 2022, doi: 10.25157/teorema.v7i2.7200.

D. N. Gujarati, Basic econometrics, 4th ed. New York: McGraw-Hill Companies, 2004.

I. Hermawan and V. Herdina, “Hubungan Antara Variabel Ekonomi Makro dengan Pembiayaan UKM (Usaha Kecil Menengah) Perbankan Syariah di Indonesia,” J. Akt. Ris. Akunt. dan Keuang., vol. 1, no. 1, pp. 50–68, 2019, doi: 10.52005/aktiva.v1i1.19.

F. Kartiasih, Y. Syaukat, and L. Anggraeni, “The determinants of energy intensity in Indonesia,” J. Ekon. dan Pembang. Indones., vol. 12, no. 2, pp. 192–214, 2012, doi: 10.1108/IJOEM-01-2020-0048.

Y. P. Ningsih and F. Kartiasih, “Dampak Guncangan Pertumbuhan Ekonomi Mitra Dagang Utama terhadap Indikator Makroekonomi Indonesia,” J. Ilm. Ekon. dan Bisnis, vol. 16, no. 1, pp. 78–92, 2019, doi: https://doi.org/10.31849/jieb.v16i1.2307.

R. Hawari and F. Kartiasih, “Kajian Aktivitas Ekonomi Luar Negeri Indonesia Terhadap Pertumbuhan Ekonomi Indonesia Periode 1998-2014,” Media Stat., vol. 9, no. 2, p. 119, 2017, doi: 10.14710/medstat.9.2.119-132.

I. P. Pertiwi, N. D. Camalia, R. Rega, and F. Kartiasih, “Mencermati Pengaruh Utang dan Variabel Makroekonomi terhadap Sustainabilitas Fiskal di Indonesia,” J. Ilm. Ekon. Dan Bisnis, vol. 20, no. 2, pp. 185–193, 2023, doi: https://doi.org/10.31849/jieb.v20i2.12259.

E. E. Br Perangin-angin, H. Bahtiar, N. F. Hasna, and F. Kartiasih, “A VECM Approach to Assessing The Impact of Economic Growth, Livestock Production Index, and Crop Production Index on Methane Gas Emissions in Indonesia,” J. Pertan. Agros, vol. 26, no. 1, pp. 4711–4732, 2024, [Online]. Available: http://dx.doi.org/10.37159/j. p agros.v26i1.3841.

I. B. P. Swardanasuta, N. R. K. Sandy, N. A. Rohmah, Y. Arindah, and F. Kartiasih, “The Effect of Industrial Value Added, Energy Consumption, Food Crop Production, and Air Temperature on Greenhouse Gas Emissions in Indonesia: A Time Series Analysis Approach,” J. Pertan. Agros, vol. 26, no. 1, pp. 4848–4865, 2024, [Online]. Available: http://dx.doi.org/10.37159/j. p agros.v26i1.3876.

G. D. Laura, R. N. Chasanah, N. Faridah, and F. Kartiasih, “Assessing Fiscal Sustainability in Indonesia : Error Correction Mechanism Diagnostic,” J. Ekon. Pembang., vol. 21, no. June, pp. 49–60, 2023, doi: 10.29259/jep.v21i1.19624.




DOI: http://dx.doi.org/10.12962/j27213862.v7i1.19843

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats