Risk Factors for Lymphatic Filariasis in Endemic Areas of Papua Using Binary Logistic Regression Based on Synthetic Minority Over-sampling Technique

Sri Rohmanisa Simangunsong, Siskarossa Ika Oktora

Abstract


Neglected tropical diseases (NTDs), such as lymphatic filariasis (LF), are a significant issue in Indonesia. The high percentage of LF in Papua highlights the urgency of addressing LF in the area due to its devastating impact on the health and economy of the poor. Moreover, imbalanced outcome variable categories are a common issue in logistic regression analysis using medical data. One of the solutions to this problem is using Synthetic Minority Over-sampling Technique (SMOTE). Therefore, this study aims to provide an overview of LF cases in endemic areas of Papua and identify the factors that influence its occurrence using binary logistic regression analysis and the SMOTE method. The data utilized was the LF diagnosis status of individuals in endemic areas of Papua Province, Indonesia as contained in the Riset Kesehatan Dasar (Riskesdas) 2018. It was found that the SMOTE approach in binary logistic regression analysis can be used to address data imbalance. The following factors are significant: sex, age, occupation, education level, use of mosquito bite preventive measures, use of latrines for defecation, and participation in Mass Drug Administration (MDA).

Keywords


lymphatic filariasis; endemic areas; SMOTE; binary logistic regression

Full Text:

PDF

References


WHO, “Neglected Tropical Diseases,” 2023. https://www.who.int/news-room/questions-and-answers/item/neglected-tropical-diseases (accessed 19 Oktober 2023).

W. K. Redekop et al., “The Socioeconomic Benefit to Individuals of Achieving the 2020 Targets for Five Preventive Chemotherapy Neglected Tropical Diseases,” PLoS Negl. Trop. Dis., vol. 11, no. 1, hal. 1–27, 2017, doi: 10.1371/journal.pntd.0005289.

WHO, “Reported Number of People Requiring Interventions Against NTDs,” 2021. https://www.who.int/data/gho/data/indicators/indicator-details/GHO/reported-number-of-people-requiring-interventions-against-ntds (accessed 26 November 2023).

Kemenkes RI, Peraturan Menteri Kesehatan Republik Indonesia Nomor 94 Tahun 2014 tentang Penanggulangan Filariasis. 2014.

Kemenkes RI, “Laporan Nasional Riskesdas 2018,” Jakarta, 2019.

Kemenkes RI, “Profil Kesehatan Indonesia 2022,” Jakarta, 2023.

B. Widjanarko, L. D. Saraswati, dan P. Ginandjar, “Perceived Threat and Benefit toward Community Compliance of Filariasis’ Mass Drug Administration in Pekalongan District, Indonesia,” Risk Manag. Healthc. Policy, vol. 11, hal. 189–197, 2018, doi: 10.2147/RMHP.S172860.

Kemenkes RI, “Penyakit Kaki Gajah Masih Ada di Indonesia, Kenali agar Bisa Mencegahnya,” Redaksi Sehat Negeriku, 2018. https://sehatnegeriku.kemkes.go.id/baca/rilis-media/20180926/5028023/penyakit-kaki-gajah-masih-ada-indonesia-kenali-agar-mencegahnya/ (accessed 26 November 2023).

Kemenkes RI, Peraturan Menteri Kesehatan Republik Indonesia Nomor 21 Tahun 2020 tentang Rencana Strategis Kementerian Kesehatan Tahun 2020-2024. 2020.

S. O. Asiedu, A. Kwarteng, E. K. A. Amewu, P. Kini, B. C. Aglomasa, dan J. B. Forkuor, “Financial Burden Impact Quality of Life among Lymphatic Filariasis Patients,” BMC Public Health, vol. 21, no. 1, hal. 1–10, 2021, doi: 10.1186/s12889-021-10170-8.

D. N. Gujarati dan D. C. Porter, Basic Econometrics, 5th ed. New York: McGraw-Hill Irwin, 2009.

P. K. Kondeti et al., “Applications of Machine Learning Techniques to Predict Filariasis Using Socio-Economic Factors,” Epidemiol. Infect., vol. 147, hal. e260, 2019, doi: 10.1017/S0950268819001481.

C. Salas-Eljatib, A. Fuentes-Ramirez, T. G. Gregoire, A. Altamirano, dan V. Yaitul, “A study on the Effects of Unbalanced Data when Fitting Logistic Regression Models in Ecology,” Ecol. Indic., vol. 85, no. October 2017, hal. 502–508, 2018, doi: 10.1016/j.ecolind.2017.10.030.

M. Nakamura, Y. Kajiwara, A. Otsuka, dan H. Kimura, “LVQ-SMOTE - Learning Vector Quantization based Synthetic Minority Over-sampling Technique for Biomedical Data,” BioData Min., vol. 6, no. 1, hal. 1–10, 2013, doi: 10.1186/1756-0381-6-16.

N. V Chawla, “Data Mining for Imbalanced Datasets: An Overview,” Data Min. Knowl. Discov. Handb., 2010, doi: 10.1007/978-0-387-09823-4.

N. V. Chawla, K. W. Bowyer, L. O. Hall, dan W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique,” J. Artif. Intell. Res., vol. 16, hal. 321–357, 2002, [Online]. Available at: http://arxiv.org/abs/2003.09788

X. F. Feng, L. C. Yang, L. Z. Tan, dan Y. G. Li, “Risk Factor Analysis of Device-Related Infections: Value of Re-sampling Method on the Real-World Imbalanced Dataset,” BMC Med. Inform. Decis. Mak., vol. 19, no. 1, hal. 1–8, 2019, doi: 10.1186/s12911-019-0899-4.

F. R. A. Pratama dan S. I. Oktora, “Synthetic Minority Over-sampling Technique (SMOTE) for Handling Imbalanced Data in Poverty Classification,” Stat. J. IAOS, vol. 39, no. 1, hal. 233–239, 2023, doi: 10.3233/SJI-220080.

M. K. Puhili, A. L. Rantetampang, B. Sandjaya, dan A. Mallongi, “The Factors Affecting with Filariasis Incidence at Dekai Public Health Regional Yahukimo District,” Int. J. Sci. Healthc. Res., vol. 3, no. 4, hal. 234–244, 2018, [Online]. Available at: www.ijshr.com

M. Sipayung, C. U. Wahjuni, dan S. Devy, “Pengaruh Lingkungan Biologi dan Upaya Pelayanan Kesehatan terhadap Kejadian Filariasis Limfatik di Kabupaten Sarmi,” J. Berk. Epidemiol., vol. 2, no. 2, hal. 263, 2018, [Online]. Available at: https://e-journal.unair.ac.id/index.php/JBE/article/viewFile/181/51

J. E. Gordon dan H. Le Riche, “The Epidemiologic Method Applied to Nutrition,” Am. J. Med. Sci., vol. 219, hal. 321–345, 1950.

D. E. Lilienfeld dan P. D. Stolley, Foundations of Epidemiology, 3rd ed. New York: Oxford University Press, 1994.

D. W. Hosmer, S. Lemeshow, dan R. X. Sturdivant, Applied Logistic Regression, 3rd ed. New Jersey: John Wiley & Sons, 2013.

A. Fernández, S. García, F. Herrera, dan N. V. Chawla, “SMOTE for Learning from Imbalanced Data: Progress and Challenges, Marking the 15-year Anniversary,” J. Artif. Intell. Res., vol. 61, hal. 863–905, 2018, doi: 10.1613/jair.1.11192.

A. J. Mohammed, “Improving Classification Performance for a Novel Imbalanced Medical Dataset using SMOTE Method,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 3, hal. 3161–3172, 2020, doi: 10.30534/ijatcse/2020/104932020.

G. Douzas, F. Bacao, dan F. Last, “Improving imbalanced learning through a heuristic oversampling method based on k-means and SMOTE,” Inf. Sci. (Ny)., vol. 465, hal. 1–20, 2018, doi: 10.1016/j.ins.2018.06.056.

N. A. Azhar, M. S. Mohd Pozi, A. M. Din, dan A. Jatowt, “An investigation of SMOTE based methods for imbalanced datasets with data complexity analysis,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 7, hal. 6651–6672, 2023, doi: 10.1109/TKDE.2022.3179381.

S. Cost dan S. Salzberg, “A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features,” Mach. Learn., vol. 10, no. 1, hal. 57–78, 1993, doi: 10.1007/bf00993481.

Koalisi Indonesia Memantau, “Menatap ke Timur: Deforestasi dan Pelepasan Kawasan Hutan di Tanah Papua,” Jakarta, 2021.

T. K. Barik, “Ecologically Sound Mosquito Vector Control in River Basins,” Environ. Manag. River Basin Ecosyst., hal. 749–761, 2015, doi: 10.1007/978-3-319-13425-3_33.

R. Pratiwi et al., “Diversity and Abundance Model According to Habitat Characteristics of Filariasis Vector, Mansonia spp. in Banyuasin, South Sumatera, Indonesia,” J. Phys. Conf. Ser., vol. 1246, no. 1, 2019, doi: 10.1088/1742-6596/1246/1/012039.

Irfan, N. T. Kambuno, dan Israfil, “Factors Affecting the Incidence of Filariasis in Welamosa Village Ende District East Nusa Tenggara (Faktor yang Memengaruhi Kejadian Penyakit Filariasis di Desa Welamosa Kabupaten Ende Nusa Tenggara Timur),” Glob. Med. Heal. Commun., vol. 6, no. 2, hal. 130–137, 2018, [Online]. Available at: https://ejournal.unisba.ac.id/index.php/gmhc/article/view/3208

M. Maifrizal, Teuku Reza Ferasyi, dan Fahmi Ichwansyah, “Risk Factor Analysis of Filariasis in Pidie Regency,” J. Kesehat. Lingkung., vol. 15, no. 3, hal. 226–234, 2023, doi: 10.20473/jkl.v15i3.2023.226-234.

J. A. Brown, K. L. Larson, S. B. Lerman, A. Cocroft, dan S. J. Hall, “Resident Perceptions of Mosquito Problems are More Influenced by Landscape Factors than Mosquito Abundance,” Sustainability, vol. 13, no. 20, hal. 1–17, 2021, doi: 10.3390/su132011533.

C. B. Chesnais et al., “Risk Factors for Lymphatic Filariasis in Two Villages of the Democratic Republic of the Congo,” Parasites and Vectors, vol. 12, no. 1, hal. 1–13, 2019, doi: 10.1186/s13071-019-3428-5.

C. R. Burgert-Brucker et al., “Risk Factors Associated with Failing Pretransmission Assessment Surveys (Pre-tas) in Lymphatic Filariasis Elimination Programs: Results of a Multi-Country Analysis,” PLoS Negl. Trop. Dis., vol. 14, no. 6, hal. 1–17, 2020, doi: 10.1371/journal.pntd.0008301.

P. W. Dhewantara, M. Ipa, dan M. Widawati, “Individual and Contextual Factors Predicting Self-Reported Malaria among Adults in Eastern Indonesia: Findings from Indonesian Community-Based Survey,” Malar. J., vol. 18, no. 1, hal. 1–17, 2019, doi: 10.1186/s12936-019-2758-2.

N. Bhullar dan J. Maikere, “Challenges in Mass Drug Administration for Treating Lymphatic Filariasis in Papua, Indonesia,” Parasites and Vectors, vol. 3, no. 1, hal. 1–7, 2010, doi: 10.1186/1756-3305-3-70.

S. Sandy dan I. Ayomi, “Gambaran Pengetahuan, Perilaku dan Pencegahan Malaria oleh Masyarakat di Kabupaten Maluku Tenggara Barat dan Maluku Barat Daya,” J. Heal. Epidemiol. Commun. Dis., vol. 4, no. 1, hal. 7–14, 2018, doi: 10.22435/jhecds.v4i1.369.




DOI: http://dx.doi.org/10.12962/j27213862.v7i2.20283

Refbacks

  • There are currently no refbacks.




Creative Commons License
Inferensi by Department of Statistics ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://iptek.its.ac.id/index.php/inferensi.

ISSN:  0216-308X

e-ISSN: 2721-3862

Web
Analytics Made Easy - StatCounter View My Stats